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Abstract

In this thesis we will describe a new class of graphs: divisible design graphs (DDG’s) or more
precise (m,n, k, λ1, λ2)-graphs. These are graphs that are also (group) divisible designs. First
we derive a theoretical basis and conditions for the existence of a DDG. Furthermore the trivial
cases are described: λ1 = k and λ2 = 0 and the whole class of graphs with λ1 = k − 1 can be
classified. A computer search than found more possible parameter sets including the multiplicities
of the eigenvalues. The results were divided into two classes: parameter sets with four or with
five eigenvalues and some construction methods were found. This thesis includes a table with all
possible parameters from the computer search on 50 vertices or less, with 241 open cases en 35
proven divisible design graphs; it is complete up to 20 vertices.
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Preface

A defense of a Master’s thesis should ideally mean that I could call myself virtually a Master of
Science, although that is not true in my case, it sure feels like it. This Master’s thesis is therefore
the crown on what will probably be 5 and 1

2 years of (hard) studying.
Studying has not always be fun, but I must admit that writing this thesis and doing the research
has been kind of fun pretty much all the way. The best moments were when I could write down
a new theorem, although it usually needed some alterations.

I could not have written this thesis without the support of Willem Haemers, whom I really need
to thank for his support and inspiration for a subject for my thesis.
Finally I believe I have not moaned about ”a boring thesis”, but if anyone feels otherwise I sincerely
apologize and thank him or her together with everyone else that is dear to me, for moral support
or distraction.

The greatest adventure is what lies ahead.
Today and tomorrow are yet to be said.

(From: The greatest adventure,
Glenn Yarbrough (1977))

Maaike Meulenberg
Tilburg, September 29, 2008
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Chapter 1

Introduction

In this thesis we will investigate a new class of graphs: Divisible design graphs. As can be guessed
from this title, it has to do both with divisible designs and graphs. We want to identify all graphs
whose adjacency matrix is also a divisible design.
In other words we want to find graphs that allow for a division in groups of equal size such that
any pair in the same group has λ1 neighbors in common and any pair that is not from the same
group has λ2 neighbors in common.
The main goal of this thesis is to describe the divisible design of graphs, identify necessary condi-
tions and come up with a list of parameter sets that may correspond to a divisible design graph.
For the number of vertices smaller or equal to 20 we can identify all divisible design graphs by
theorems or individually by other means.
The theorems that define divisible design graphs are in most cases defined with other graphs or
combinatorial objects, therefore for large graphs, the theorems might not always be useful, since
for large objects existence is not always verified.

In Chapter 2 and 3 we will first treat some concepts from graph and design theory, where the
emphasis in Chapter 3 is on divisible design graphs. In Chapter 4 the divisible design graphs
are formally defined, conditions and eigenvalues are given and theorems on a related matrix are
proven. In Section 4.2 two trivial classes of divisible design graphs are described, these subclasses
can both be described by one theorem and can therefore be excluded from the desired list of
parameter sets.
In Chapter 5 the search for possible parameter sets is explained and started with for small number
of vertices. In Section 5.2 all divisible design graphs with λ1 = k − 1 are classified, which results
in another subclass that can be easily described. In Section 5.3 and 5.4 we try to construct
more graphs from the remaining parameter sets. In 5.3 this is done for parameter sets with 4
eigenvalues, in 5.4 for sets with 5 eigenvalues. Since more research has been done on graphs with
four eigenvalues 5.3 is almost complete up to 30 vertices, 5.4 up to 20 vertices.
In Chapter 6 we will finish with some concluding remarks and recommendations for future research.
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Chapter 2

Graphs

2.1 Preliminaries & Properties

A graph G is usually denoted as the set (V,E), where V is the collection of vertices and E the
collection of edges, an edge is pair of vertices. If an edge ij exists point i, j ∈ V are adjacent, if
i = j the edge is call a loop. In this thesis we will only consider undirected edges, i.e. if edge ij
exists, edge ji is the same edge. A graph is connected if it is possible to ’walk’ from i to j over
the edges for any i, j ∈ V .
In every point one or more edges can come together, the number of edges that starts in point i is
denoted as ki. If ki = k for all i ∈ V , then the graph is called k-regular.
The sets of vertices and edges can be conveniently reported in an adjacency matrix A, where aij
is 1 if there is an edge between i and j, 0 if not. This matrix is symmetric because the graph is
undirected. If a graph has no loops the adjacency matrix has a zero diagonal, in this thesis this
will always be the case.
The complement of a graph G has an adjacency matrix J − A− I, where J is an all one matrix,
A the adjacency matrix and I the identity matrix.
A graph is walk-regular if the number of closed walks of length r is the same for every v ∈ V .
A walk of length r between i and j exists if vertex i and j are connected through r edges (not
necessarily distinct edges), if i = j the walk is closed. So we have (Ar)ij is the number of walks
of length r from i to j. We can check if a graph is walk-regular by looking at the diagonal of
Ar, if the diagonal is constant for every r, the graph is walk-regular. In general it holds for a
walk-regular graph that:

θr =
1
v

nX
i=0

miλ
r
i ≥ 0, θr ∈ N (2.1)

Where λi is one of the n eigenvalues of the adjacency matrix and mi the corresponding multiplicity.
The diameter d of a graph is defined as d = maxi,j cij , where cij is the shortest path from i to j.
A graph can be distance-regular, which means that for any pair of vertices i and j and any
x, y ∈ {0, . . . d} the number of vertices on distance x from i and distance y from j is constant for
any i and j and depends solely on the choice of x and y and the distance between i and j.

2.2 The eigenvalues of the adjacency matrix

The eigenvalues of a graph are real numbers and there exist |V | independent eigenvectors. This is
true because any adjacency matrix is an integer valued symmetric matrix, thus the algebraic mul-
tiplicities are equal to the geometric multiplicities. The collection of eigenvalues with multiplicities
is called the spectrum of a graph.
For a k-regular graph it holds that one of the eigenvalues is k and the corresponding multiplicity
is 1 if the graph is connected, in general the multiplicity of k corresponds to the number of

2



CHAPTER 2. GRAPHS 3

components of the graphs (Haemers, 2007).
In a graph all eigenvalues must sum up to 0, since an adjacency matrix has a zero diagonal.

2.3 Special graphs

A complete graph on n vertices, has degree n− 1 and therefore a total of 1
2n(n− 1) edges. Every

vertex is connected to every other vertex.
A bipartite graph is a graph (V,E) such that V can be split into two sets with no edges between
members of the same set. We will denote a bipartite graph as K(m,n), where m is the size of a
set and n the size of the other.
A Strongly Regular Graph (SRG) is defined by the parameters v, k, λ, µ. Where v is the number
of vertices, k the degree of every point of the graph. λ is the number of neighbors two adjacent
points have in common, whereas µ is the number of neighbors two non adjacent points have in
common.
Furthermore a connected strongly regular graph has exactly three distinct eigenvalues and con-
versely any connected regular graph with precisely three distinct eigenvalues is a strongly regular
graph (Haemers, 2007).
If a strongly regular graph has λ = µ, then it is called a (v, k, λ)-graph. The adjacency matrix of
a strongly regular graph with λ = µ corresponds to a 2-design.

A matrix is circulant if every row can be obtained from the row above, by moving every element
one place to the right and the last entry goes the first position. A graph is circulant if it admits
a circulant adjacency matrix.
A cocktail party graph is a graph with an even number of vertices v and any vertex is connected
to all other vertices except one, therefore there are 1

2v pairs that are unconnected. The cocktail
party graphs are called as such because the graph corresponds with a party where one shakes
everybody’s hand, except one’s partner’s hand.
A line graph L(H) of a graph H = (V,E) is a graph where every edge of H corresponds with
a vertex in the line graph L(H). In the line graph two vertices are connected if the edges they
correspond with in H have a vertex v ∈ V in common. The line graph has adjacency matrix
CCT − 2I where I is the identity matrix en C is the matrix where every row denotes an edge of
H, thus is of size |E| × v.
A special line graph is the triangular graph, it is the line graph of a complete graph on v vertices
and is denoted by T (v), all triangular graphs are strongly regular.



Chapter 3

Design Theory

This Chapter provides the basics concepts in design theory, and especially divisible designs.

3.1 What is a design?

First we need to clearly define what a design is and what it is for. The field of block designs
has its origin in the executing of agricultural experiments (Lint & Nienhuys, 1991). In these
experiments a number of varieties were compared on their reaction to different treatments, e.g.
different fertilizers. The varieties were put in blocks that each get the same treatment. A variety
however can occur in more than one block, but within a block the varieties are treated identically.
The field of block designs is now concerned with how to spread the varieties over the blocks: what
is a ’good’ way to do that, but also how many blocks do we need to get a ’good’ result.
Formally we define two sets, a set P of points (varieties in the example) and a set B of blocks.
Between those two sets we can define an incidence relation D : a point p ∈ P is incident with a
block b ∈ B if point p is in block b. The number of points is denoted as v and the number of
blocks as b.

Example 3.1 An example of such an incidence relation can be made from a graph. The set P
is the set of vertices of the graph, the set B is the set of edges. This means that every block is
incident with only two points and the number of blocks is equal to the number of edges.

Note that the definition does not exclude repeated blocks, therefore there might be some blocks
that are incident with exactly the same points. Repeated block are allowed, but we will see later
that in the case of divisible design graphs, designs with repeated blocks, correspond to trivial
designs.
The incidence matrix A of design D is a (0,1)-matrix of size (v × b)in which:

(A)ij =
§

1 if point i ∈P is incident with block j ∈ B
0 if point i ∈P is not incident with block j ∈ B

The general concept of an incidence structure is now defined, but it becomes interesting when it
is somewhat regular, has some basic structural properties. We will start with defining a t-design.

Definition 3.1 An incidence structure with a set P of v points and a collection of blocks B is
called a t-design with blocksize k and index λ if v ≥ k ≥ t ≥ 0 and

1. Every block is incident with the same number of points, i.e. k points.

2. For every subset T of P with |T | = t it holds that exactly λ blocks are incident with all
points of T .

4



CHAPTER 3. DESIGN THEORY 5

A t-design with parameters v, k, λ is denoted as a t-(v, k, λ) design. In all t-designs it holds that:

bk = rv (3.1)

r is the replication number, i.e. the number of times a point appears in a block.
Note that any t-design is also al t− 1-design. This is true because if all subsets of points size t are
incident with λ blocks, then all subsets of any size smaller than t occur in a constant number of
blocks as well.
Before we will introduce a special class of designs in section 3.2, the divisible designs, we will first
go into detail for 2-designs and turn our attention to the square and/or symmetric designs.

3.1.1 2-designs

The 2-designs are a subclass of the t-designs. This class is especially important because a set of
size two is a pair and looking at pairs makes sense in many cases. The definition of a 2-design is
exactly the same as the t-design for t = 2, where λ is the number of times two points occur in the
same block. A 2-design is sometimes called a Balanced Incomplete Block Design (BIBD).
The incidence matrix A of a 2-design has the following properties:

1. Every row of A has r times the number one.

2. Every column of A has k times the number one.

3. Two different rows have an inproduct of λ.

Example 3.2 A classic example of a 2-design is the Fano plane, which corresponds to a 2-(7,3,1)
design. Block B0 = {0, 1, 3} and for every i with 1 ≤ i ≤ 6 we find Bi by summing i to every
element of B0: (B0 + i) mod 7. The incidence matrix A can be found in Figure 3.1, note that
the rows correspond to a point, the columns to a block.

A =

0BBBBBBBB@
1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

1CCCCCCCCA
Figure 3.1: The Fano plane: incidence matrix (left) and the geometric representation (right)

In case of the Fano plane, the replication number r is 3 and so is k. It can also be seen that every
treatment has exactly one block in common with any other treatment, which means every pair
’meets’ each other exactly one time, λ = 1.
The Fano plane in the right of Figure 3.1 is drawn such that every block is represented by a line,
the circle also represents one of the seven blocks.

Fisher’s inequality holds for 2-designs and says that b ≥ v. If it reduces to an equality, the number
of blocks is equal to the number of vertices and we have a square design.

3.1.2 Square or symmetric?

Consider the case that the number of rows is equal to the number of columns in the design. In a
such a square design v = b and therefore also r = k, for notational convenience we will not use b
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and r if the design matrix is square, only k and v. The Fano plane in Figure 3.1 for example is a
square design.
Confusingly in literature square designs are sometimes called symmetric designs. Later on we will
need to use the fact that a design matrix can be symmetric (D = DT ) therefore we will make a
strict distinction between square and symmetric. Note that the Fano plane can have a symmetric
design matrix1, it can however not be made symmetric with zeros on the diagonal, which would
make it correspond to a graph.

3.2 Divisible Designs

A divisible design (DD) is a special design, where the point set can be partitioned into m classes
of size n, such that any two points in the same class occur together in λ1 blocks and two points
from different classes occur together in λ2 blocks.
We know that:

v = mn and bk = vr (3.2)

It also holds that:
r(k − 1) = λ1(n− 1) + n(m− 1)λ2 (3.3)

(3.3) is true because any point θ occurs in r blocks and all blocks contain k − 1 points that θ can
pair with. It must also hold that θ pairs λ1 times with the n− 1 members of his own class and λ2

times with the n(m− 1) members of all other classes.
Combining (3.2) and (3.3) results in the fact that only five parameters are needed to describe a
divisible design: DD(m,n, k, λ1, λ2).
Since we are interested in proper divisible designs we will assume that λ1 6= λ2, m ≥ 2 and n ≥ 2,
otherwise this would be an ordinary block design. For the moment we will allow the use of repeated
blocks, but in section 4.2 we will see that repeated blocks correspond with trivial cases.

We will now try do derive the eigenvalues of the incidence matrix A of a divisible design. AAT

gives us some structural information.

AAT =

�
C B . . . B
B C . . . B
...

...
. . .

...
B B . . . C

�
AAT is built of two different block matrices C and B, both of size (n× n). Blocks of type C are
on the diagonal of AAT , blocks of type B are elsewhere, they look like:

C =

�
r λ1 . . . λ1

λ1 r . . . λ1

...
...

. . .
...

λ1 λ1 . . . r

�
B =

�
λ2 λ2 . . . λ2

λ2 λ2 . . . λ2

...
...

. . .
...

λ2 λ2 . . . λ2

�
The form of C is easily explained by looking at the inproducts. The product of row i of A and
column i of AT is equal to r because they are identical and point i occurs in exactly r blocks. Off
the diagonal of C we see λ1, the inproduct of two rows corresponding to blocks of the same class.
Matrix B consists completely of inproducts of blocks that are not of the same class and have an
inproduct of λ2. Therefore the elements of AAT are defined by:

(AAT )ab =
vX
j=1

(A)aj(A)bj =

8<: r if a = b
λ1 if a and b belong to the same class
λ2 if a and b belong to different classes

1Renumbering the blocks (or points) results in a symmetric matrix
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Now we can write AAT as the product of three matrices:

AAT = rIv + λ1(Kmn − Iv) + λ2(Jv −Kmn) (3.4)

Where Iv represents the identity matrix of size v, Jv is a matrix (v× v) filled with ones and Kmn

is defined as:

Kmn = Im ⊗ Jn =

�
Jn 0n . . . 0n
0n Jn . . . 0n
...

...
. . .

...
0n 0n . . . Jn

�
Where 0n is the (n× n) zero matrix. Since we now know that AAT ∈ span{Kmn, Jv, Iv} we can
find the eigenvalues of AAT . To do that we need the eigenvalues and eigenvectors of Kmn, Jv and
Iv.

• Jv has the eigenvalue v with multiplicity 1 and the eigenvalue 0 with multiplicity v− 1. The
vector 1v is an eigenvector corresponding to the eigenvalue v.

• Kmn has the eigenvalue n with multiplicity m and the eigenvalue 0 with multiplicity m(n−1).
The vector 1v is an eigenvector corresponding to the eigenvalue n.

• Iv has the eigenvalue 1 with multiplicity v.

AAT is a symmetric integer matrix (v×v). Such a matrix has v real eigenvalues and v independent
eigenvectors, that are orthogonal.
Suppose now we have some arbitrary combination αKmn + βJv. To find eigenvalues of this new
matrix we can sum the eigenvalues of Kmn and Jv if they correspond to the same eigenvector and
obtain all eigenvalues of αKmn + βJv. This is possible, because Jv and Kmn have v independent
eigenvectors in common. In Table 3.1 all eigenvalues of the linear combination are given.

Eigenvector Eigenvalues of αKmn + βJv Multiplicity
1v αn+ βv 1
an eigenvector of Kmn corresponding to n (⊥ 1v) αn+ β0 m− 1
an eigenvector of Kmn corresponding to 0 α0 + β0 m(n− 1)

Table 3.1: Eigenvalues of αKmn + βJv with multiplicities

From now on we will call X the collection of eigenvectors of Kmn corresponding to the eigenvalue
n but unequal to 1v, and Y the collection of eigenvectors of Kmn corresponding to the eigenvalue
0.
We can find the eigenvalues of AAT in the same way, by altering (3.4) somewhat into:

AAT = (r − λ1)Iv + λ2Jv + (λ1 − λ2)Kmn (3.5)

Just as in the simple case of αKmn + βJv the eigenvalues of AAT can be computed by summing
the eigenvalues of the three matrices if they correspond to the same eigenvector. The eigenvalues
of AAT are in Table 3.2.

Eigenvector Eigenvalues of AAT Multiplicity
1v r − λ1 + λ2v + (λ1 − λ2)n = rk 1
∀ x ∈ X r − λ1 + (λ1 − λ2)n = rk − λ2v m− 1
∀ y ∈ Y r − λ1 m(n− 1)

Table 3.2: Eigenvalues of AAT with multiplicities
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We can simplify the eigenvalue corresponding to 1v by using expression (3.3) and rewrite that
into:

rk = r − λ1 + λ2v + (λ1 − λ2)n (3.6)

With this equation the first and second eigenvalue can be simplified and in Table 3.2 the simplified
eigenvalues are also presented.
AAT is a positive semi-definite matrix2 and therefore all eigenvalues are nonnegative. It is straight-
forward from the definition of a divisible design that k − λ1 ≥ 0, but also rk − vλ2 ≥ 0.
Based on this observation Bose & Conner (1952) define three classes of divisible designs, these
classes are exhaustive and mutually exclusive:

• Singular group divisible designs, r = λ1

• Semi-regular group divisible designs, r > λ1 and rk − λ2v = 0

• Regular group divisible designs, r > λ1 and rk − λ2v > 0

The restrictions the eigenvalues and multiplicities impose on the existence of a divisible design is
one of the starting points of the search for the desired graphs. There are however more restrictions;
we can use expression (3.3) and state some divisibility conditions. r needs to be an integer, thus
dividing both sides of (3.3) with k − 1 must result in an integer. This results in the following
corollary.

Corollary 3.2.1 The following conditions are necessary for the existence of a divisible design:

a. (m− 1)nλ2 + (n− 1)λ1 ≡ 0 mod k − 1

b. v((m− 1)nλ2 + (n− 1)λ1) ≡ 0 mod k(k − 1)

Proof. a. follows from (3.3) b. follows from (3.1) combined with (3.3). �

3.2.1 Dual Property

Some divisible designs possess a special property, the dual property. That means that not only the
points can be partitioned in m classes of size n, with λ1 and λ2 as characteristic parameters, but
the blocks can also be partitioned in m classes of size n on the basis of λ1 and λ2. The transpose
of the matrix of such a divisible design is again a divisible design with the same characteristics.
A divisible design that possesses the dual property can therefore be partitioned in m2 blocks of
size n×n. Bose (1977) has shown that within such a block the row and column sum are a constant
rij . Bose puts these sums in a matrix R of size (m×m) and rij is the row/column sum of block
Bij . If in the remainder of this thesis Bij is mentioned, we refer to a block within the design (or
adjacency) matrix.

A =

�
B11 B12 . . . B1m

B21 B22 . . . B2m

...
...

. . .
...

Bm1 Bm2 . . . Bmm

�
, R =

�
r11 r12 . . . r1m
r21 r22 . . . r2m
...

...
. . .

...
rm1 rm2 . . . rmm

�
(3.7)

2It is a real valued symmetric matrix



Chapter 4

Divisible Design Graphs

In this Chapter the main topic of this thesis is introduced and defined. Furthermore some trivial
constructions are described.

4.1 Definition

The subject of this thesis is Divisible Design Graphs (DDG’s). These are graphs whose adjacency
matrix is also the incidence matrix of a divisible design. If all parameters are known the DDG can
be described as a (m,n,k,λ1,λ2)-graph. Clearly the divisible design corresponding to a divisible
design graph possesses the dual property, because the matrix is symmetric.
So, if A is the incidence matrix of a divisible design, then A is the adjacency matrix of a divisible
design graph whenever A = AT and A has a zero diagonal. Because A has k 1’s per row (and
column) any DDG will correspond to a k-regular graph
In Chapter 3.2 we already looked at the eigenvalues of AAT for divisible designs in general. Since
we now assume that A is symmetric it holds that AAT = A2 and since r = k the eigenvalues of
A2 are now simplified and reported in Table 4.1.

Eigenvalues of A2 Multiplicity
θ0 = k2 1
θ1 = k2 − λ2v m− 1
θ2 = k − λ1 m(n− 1)

Table 4.1: Eigenvalues of A2 with multiplicities

Note that θ1 and θ2 cannot be equal:

k − λ1 = k2 − λ2v

k − λ1 = λ2v + (λ1 − λ2)n+ k − λ1 − λ2v

0 = (λ1 − λ2)n

In the second line of the equations above equation (3.6) is used. This equality results in the
conclusion that λ1 = λ2, which cannot be the case, because then it would not be a proper divisible
design.

The eigenvalues of A2 in Table 4.1 give us much information of the eigenvalues of A, but do not
determine them completely, the eigenvalues of A are in Table 4.2. The eigenvalues of A are the
roots of those of A2, but the multiplicities are not yet completely determined by the spectrum of
A2. These eigenvalues and multiplicities are interesting because they give information about the
graph we want to find.

9
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Eigenvalues of A Multiplicity
α0= k 1
α1=

√
k − λ1 f1

α2= −
√
k − λ1 f2 f1 + f2 = m(n− 1)

α3=
√
k2 − λ2v g1

α4=−
√
k2 − λ2v g2 g1 + g2 = m− 1

Table 4.2: Eigenvalues of A with algebraic multiplicities

Corollary 4.1.1 A matrix A with more than 5 distinct eigenvalues cannot be a divisible design
graph.

Proof. The eigenvalues of A are the roots of the eigenvalues of A2, k2 has only multiplicity 1, thus
A has k or −k. Since we know that a connected k-regular graph has one eigenvalue k, this is the
one with multiplicity 1 and not −k. The other roots of the two eigenvalues of A2 may be the
positive as well as the negative root. �

The first condition that must hold is that the sum of all eigenvalues is equal to the trace of matrix,
hence:

traceA = 0 = k + (f1 − f2)
p
k − λ1 + (g1 − g2)

È
k2 − λ2v (4.1)

Where f1, f2, g1, g2 are the multiplicities of eigenvalue α1 through α4. From (4.1) we can draw
some conclusions:

• It is not possible that f1 = f2 and g1 = g2

• k > 0 therefore f2 > f1 and/or g2 > g1

The first conclusion is obvious because this would reduce (4.1) to 0 = k which is clearly a contra-
diction, because k > 0. Statement 2. holds because k is positive and therefore (f1−f2) or (g1−g2)
must be negative. A not so obvious result from (4.1) is summarized in the following Theorem.

Theorem 4.1.1 In a divisible design graph k − λ1 or k2 − λ2v is a square. If k − λ1 is not a
square, then f1 = f2 and if k2 − λ2v is not a square. then g1 = g2.

Proof. Suppose both k − λ1 and k2 − λ2v are no proper squares , then the two roots multiplied
by some integer must sum up to a proper integer. Let’s call γ1 = f1 − f2 and β1 = g1 − g2:

−k = γ1

p
k − λ1 + β1

È
k2 − λ2v (4.2)

Dividing k − λ1 and k2 − λ2v by square factors, we may write:

−k = γ2
√
q + β2

√
p with p and q square free (4.3)

If we square the equation and because p and q square free it can be easily seen that
√
pq must be

an integer, so q = p. So the equation reduces to:

−k = (γ2 + β2)
√
p (4.4)

For the equation to hold
√
p must be rational and by construction also integer. This results in the

conclusion that both k − λ1 and k2 − λ2v are proper squares, or only one of them combined with
either γ1 is zero or β1 is zero, we already saw that they cannot both be zero. �

A necessary condition for the existence of a symmetrical regular divisible design with parameters
v, k,m, n, λ1, λ2 is (Bose & Connor (1952)):

(k2 − λ2v)m−1(k − λ1)m(n−1) = a where a is a square (4.5)
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That is, the expression above is a perfect square. This condition holds for regular divisible designs
(k − λ1 > 0 and k2 − λ2v > 0). If either k − λ1 or k2 − λ2v is zero, the expression equals zero,
which is also a square. If k − λ1 = 0 then we have a trivial case, which is explained in 4.2.1. If
k2−λ2v = 0 then k−λ1 will always be a square in case of a divisible design graph, since otherwise
the trace cannot be zero.
This condition results in four situations:

1. The condition is automatically fulfilled if both k2 − λ2v and k − λ1 are squares.

2. If k2 − λ2v is a non-zero square and k − λ1 is not, m is even or n odd.

3. If k − λ1 is a non-zero square and k2 − λ2v is not, then m is odd.

4. If both k2 − λ2v and k − λ1 are not squares, both powers must be even, which means that
m should be odd and n should also be odd.

Result 4. does hold in general, but we already know from (4.1) that this situation will not occur.
The fact that the trace needs to be zero and (k2 − λ2v)m−1(k − λ1)m(n−1) is a square results in
conditions on m and n or the multiplicities.

In the following theorem we refer to the matrix R, as defined in Bose (1977) to prove walk-
regularity in a special case. Remember that the matrix R is a (m×m) matrix that has as entries
the row sums of all the blocks of the design/adjacency matrix, see also 3.2.1.

Theorem 4.1.2 If the matrix R of a divisible design graph has a constant diagonal, it is walk-
regular.

Proof. A is the adjacency matrix of the divisible design graph. It is clear that Ar has a constant
diagonal if r is even, remember the form of A2, for any even r it holds Ar = aJv+bK+cIv. If Ar ·A
also has a constant diagonal, An always has a constant diagonal for any n. If R has a constant
diagonal with entries d, the diagonal of Ar · A has a diagonal with entries d(a+ b) + (k − d)c on
every place. If the diagonal of R is not constant the diagonal of Ar ·A is not necessarily constant.�

Theorem 4.1.3 The matrix R of a divisible design graph is symmetric and has the eigenvalues
k, α3, α4 and corresponding multiplicities 1,g1, g2.

Proof. The adjacency matrix A of a divisible design graph is always symmetric. Since this corre-
sponds directly to a divisible design, the matrix R defined for divisible designs is also symmetric.
From Bose (1977) we can easily see that the eigenvalues of R correspond to α3 and α4 of the
divisible design graph.
The multiplicities of α3 and α4 are g1 and g2. Take an eigenvector w of R corresponding to α3.
We then have:

Rw = α3w = α3

�
r11w1 + r12w2 + · · ·+ r1mwm

...
rm1w1 + rm2w2 + · · ·+ rmmwm

�
From this vector w we can construct an eigenvector wA of the adjacency matrix A of the DDG,
this vector has the element w1 on the first n positions, w2 on the next n positions and so on. We
now have:

AwA = α3

0BBBBBBBBBBB@

r11w1 + r12w2 + · · ·+ r1mwm
...

r11w1 + r12w2 + · · ·+ r1mwm
...

rm1w1 + rm2w2 + · · ·+ rmmwm
...

rm1w1 + rm2w2 + · · ·+ rmmwm

1CCCCCCCCCCCA
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Thus, from every eigenvector of R corresponding to α3 we can make an eigenvector of A, for the
eigenvectors of α4 holds the same. The multiplicities of the eigenvalues α3 and α4 of R and A can
only be exactly the same, that is g1 and g2.
Note that this reasoning only holds because α1 and α2 cannot be equal to α3 and α4, which is
true in case of divisible design graphs. �

Corollary 4.1.2 The matrix R of a divisible design graph has 0 ≤ D ≤ Dmax, where D represents
the trace of R and Dmax = (n− 1)m.

Proof. In a matrix the trace is equal to the some of the eigenvalues, D in this case, thus D =
k+(g1−g2)α3. Since a divisible design graph has only positive entries, the trace cannot be smaller
than zero. On the diagonal there can not be blocks Jn, since a graph has a zero diagonal, so the
maximal trace can be (n− 1)m. �

4.2 Trivial cases of DDG

Before checking all possible parameter sets to find the desired divisible design graphs, we will
exclude two trivial cases.

4.2.1 λ2 = 0

We will start this section with giving an example of a DDG with λ2 = 0 and then proceed to
generalize the example to prove that this generalization is the only possibility when λ2 = 0.

Example 4.1 The picture in Figure 4.1 is clearly a (2,4,3,2,0)-graph, a divisible design graph.
The graph can be split into two groups of size four each, the upper and lower row of points in the
picture. The inproducts of the rows of the same groups is λ1 = 2 and those of rows of different
groups λ2 = 0. The graph itself is a bipartite graph and can for example be found by drawing the
incidence graph of a 2-(4,3,2)-design.
An incidence graph means that the blocks of the 2-(v,k,λ)-design are drawn as vertices in the
graph together with the points of the design. An edge is drawn if point i is in block j. This results
in a k-regular graph, that is also a divisible design graph with λ1 = λ and λ2 = 0, no edges are
drawn between two points or two blocks.

A =

0BBBBBBBBBB@
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 1
1 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0

1CCCCCCCCCCA
Figure 4.1: Example of a divisible design graph with λ2 = 0

The matrix A in Figure 4.1 is built of four blocks. On the diagonal we have two zero matrices of
size four. In the upper right corner there is a 2-(4,3,2) design and in the lower right corner is the
transpose of the incidence matrix of this design. Note that the example in Figure 4.1 is the cube
graph.

We will now show that every DDG with λ2 = 0 is always built of a specific kind of blocks.
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Theorem 4.2.1 A divisible design graph with λ2 = 0 (and λ1 > 0) has adjacency matrix A
with exactly one non-zero block in every row and column. A non-zero block on the diagonal is a
(n,k,λ1)-graph, other non-zero blocks are square 2-(n,k,λ1) designs with Bji = (Bij)T .

Proof. It is clear that if A is built as the theorem prescribes, we have a DDG with λ2 = 0. We
will now show that this is the only way of constructing a DDG with λ2 = 0. So we will construct
a matrix A:

A =

�
B11 B12 . . . B1m

B21 B22 . . . B2m

...
...

. . .
...

Bm1 Bm2 . . . Bmm

�
, Bij = Bji ∈ Rn×n (4.6)

Suppose there is an element bxy = 1 in a certain block Bij , i 6= j and we want to construct a DDG
with λ2 = 0. Assume:

bxy = 1, bxy ∈ Bij , x, y ∈ {1 . . . v}

Then row x will consist of only zeros except in block Bij , for column y, row y and column x holds
the same. So in row x you still need to place k − 1 ones, they can only be placed within block
Bij . Placing these ones results in more columns that are for the largest part filled with zeros (and
because of symmetry, also lots of rows).
But since A must also correspond to a divisible design, the row x must have an inproduct of λ1

with the rows from the group it belongs to. Since it must hold for every row of the group, every
row in the block Bij will get at least one 1, since λ1 is strictly larger than 0. This implies that
Bik = 0n if k 6= j. The only way the ones within Bij can be be placed is as a square 2-(n,k,λ1)
design. Because of symmetry, column j has been determined also.
The blocks that are yet undetermined can be filled the same way which means if there is a 1 in
any off-diagonal block that is not yet filled, we will have the same situation as before and more
zero blocks and two 2-designs will. If there is a one in a diagonal block Bii this specific block must
be a (n,k,λ1)-graph and any other block in row i and column i are zero blocks. �

Corollary 4.2.1 If adjacency matrix A corresponds to a connected divisible design graph with
λ2 = 0, then m = 2.

Proof. Follows directly from the proof of Theorem 4.2.1. �

The eigenvalues of a connected divisible design graph with λ2 = 0 are in Table 4.3. Since it is
connected α3 has multiplicity 0 and α4 multiplicity m − 1 = 1. The only way the trace can now
be zero is when α1 and α2 have the same multiplicity n− 1.

Eigenvalues of A (4.2.1) Multiplicity
α0 = k 1
α1 =

√
k − λ1 n− 1

α2 = −
√
k − λ1 n− 1

α4 = −k 1

Table 4.3: Eigenvalues of connected divisible design graphs with λ2 = 0

Corollary 4.2.2 Every connected divisible design graph with λ2 = 0 (and m = 2) corresponds to
a connected bipartite k-regular graph.

Proof. Follows directly from the proof of Theorem 4.2.1. Note that the reverse does not hold, take
for example the k-regular bipartite graph in Figure 4.2, the circular graph C8. �



CHAPTER 4. DIVISIBLE DESIGN GRAPHS 14

A =

0BBBBBBBBBB@
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

1CCCCCCCCCCA
Figure 4.2: Example of a bipartite k-regular graph that is not a divisible design graph

Corollary 4.2.3 A connected divisible design graph with λ2 = 0 is the incidence graph of a
symmetric 2-design.

Proof. A line is drawn in the graph from vertex x to y if the point, vertex x is representing, is
in the block that y represents. Which means that only off-diagonal we will encounter non-zero
entries. Any connected divisible design graph has only two groups, therefore λ2 = 0. We can
also show that λ1 is constant, because the off-diagonal blocks correspond exactly to the original
2-design, which has a constant λ, thus λ = λ1. �

4.2.2 λ1 = k or λ2 = k

We also have a trivial case when λ1 = k. This situation can only occur if the rows of the matrix
A are the same within a group. Which makes the design itself already less interesting to study,
quite often definitions exclude these repeated blocks.

Theorem 4.2.2 A (connected) divisible design graph with λ1 = k (and λ2 > 0) exists if and only
if there exists a (m, k

n ,λ2
n )-graph.

Proof. Note again that all rows of the same group must be identical to have an inproduct of k.
This means that all blocks on the diagonal Bii = 0n, because a graph has a zero diagonal. Because
all rows/columns in a group are equal, the blocks Bij , i 6= j can only be of the type Jn or 0n.
It is easily verified that if there exists a (v, k, λ)-graph with the desired parameters and adjacency
matrix A, A ⊗ Jn is a divisible design graph with λ1 = k. We will now show this is the only
possibility for such a graph to exist.
Since the blocks Bij are either Jn or 0n, it is enough to find a symmetric (0,1)-matrix C (m×m)
with zeros on the diagonal, (thus C corresponds to a graph) that satisfies C ⊗ Jn to be a divisible
design graph. In order to find a divisible design graph C must have k

n 1’s per row (and column).
The inproduct of the rows of C is multiplied with n in the Kronecker product and therefore
corresponds to λ2, so if the inproduct of C is equal to λ2

n the inproduct of C ⊗ Jn has exactly the
desired inproducts. If this inproduct is not equal within C, λ2 will also never be constant. The C
we have now constructed is exactly the definition of a (v, k, λ)-graph. �

If C = J2 − I2, C ⊗ Jn is a complete bipartite graph.

Corollary 4.2.4 A connected divisible design graph with λ1 = k exists only if k and λ2 are
divisible by n.

Proof. Follows immediately from the proof of Theorem 4.2.2. �

The eigenvalues of a connected divisible design graph with λ1 = k are in Table 4.4, the multiplicities
are found with Haemers (2007).
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Eigenvalues of A (4.2.2) Multiplicity
α0 = k 1
α1 = α2 = 0 m(n− 1)

α3 =
√
k2 − λ2v

1
2

�
m− 1− k√

k2−λ2v

�
α4 = −

√
k2 − λ2v

1
2

�
m− 1 + k√

k2−λ2v

�
Table 4.4: Eigenvalues of connected divisible design graphs with λ1 = k

Theorem 4.2.3 A divisible design graph with λ2 = k does not exist.

Proof. For two rows to have an inproduct of k the rows must be identical. This means that all
rows of the adjacency matrix A must be identical, which can never correspond to a (connected)
graph. �



Chapter 5

Non-trivial divisible design graphs

In this chapter non-trivial divisible design graphs will be searched for, in contrast with the trivial
graphs of the previous chapter. First the procedure that selects possible parameter sets for divisible
design graphs is explained, which uses definitions or conclusions from Chapter 3 and 4. We then
show all divisible design graphs on 10 vertices or less. Then we will uncover a special class of
non-trivial designs, divisible design graphs with λ1 = k − 1.
The last two sections are dedicated to divisible design graphs with 4 or 5 eigenvalues respectively.

5.1 Searching for possible parameter sets

The chapters on designs and divisible design graphs already show the most important restrictions
we can impose on the search. At first the necessary condition (4.5) is important and of course the
trace of the graph must be zero and equal to the sum of the eigenvalues (4.1), but also the more
general necessary condition from Corollary 3.2.1 must be true. The remaining options must be
such that they can potentially correspond to both a graph and a divisble design.
The procedure we used to search for a divisible design graph starts with a given number of points
v and proceeds as follows:

Step 0. Checks whether v is not a prime. Since we have defined a group divisible design as having
groups of equal size, v cannot be prime.

Step 1. All possible number of groups m and group sizes n are determined with help of the prime
factorization of v. The number of combinations is equal to the proper number of divisors of
v.

Step 2. For all combinations of k, λ1, λ2 and m (with corresponding n) it is checked whether
(4.5) is a proper square and whether k2−λ2v ≥ 0. This is done with the use of the following
restrictions:

• k runs from 3 to v−3. A degree of 1 will not correspond to a connected graph, a degree
of 2 gives a cycle graph or a disjoint union of cycle graphs and will not correspond to
a non-trivial divisible design. The large degrees v − 1 and v − 2 are excluded because
complete graphs or cocktail party graphs cannot correspond to a divisible design graph.

• It cannot be so that v is odd and k is odd.

• Both λ1 and λ2 run from a to k − 1, where a = max(0, 2k − v). This lower bound
is as such because the inproduct of two arbitrary rows of the adjacency matrix of a
k-regular graph is 0 or 2k− v in the ’worst’ case. The intuition behind this is, that if k
is relatively large, λi cannot be small. The upper bound for λ1 is as such because the
trivial case is excluded and for λ2 because it cannot exist.

• Exclusion of the cases for which λ1 = λ2, λ2 = 0.

16
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Step 3. The necessary conditions from Corollary 3.2.1 are checked and it is checked whether (3.6)
holds.

Step 4. For the remaining possibilities it is checked whether k2 − λ2v and/or k− λ1 are squares.
If they are not, the corresponding multiplicities are equal, e.g. if k2 − λ2v is not a square
g1 = g2 = (m−1)

2 .

Step 5. In this step the multiplicities are looked at more carefully:

• Options for which f1 = f2 and g1 = g2 are excluded

• Options for which f1 = f2 or g1 = g2 are not integers are excluded.

• Options where λ1 = k − 1 and n is odd are discarded, in section 5.2 we will see why.

• Options with k2 − λ2v = k − λ1 are discarded. Because in Chapter 4 we already saw
this cannot occur.

• If only one of k2 − λ2v or k − λ1 is a not a square, the yet undetermined multiplicities
can be computed and checked if they are integers.

• If both k2 − λ2v and k − λ1 are squares, the multiplicities are not yet determined and
remain in the list.

Step 6. If both k2 − λ2v and k − λ1 are squares, the multiplicities can be found by checking all
combinations. Every combinations is checked for (4.1). If that holds it is an option and
it is stored, if the equality does not hold the option is discarded. The options for which
k2−λ2v = 0 are automatically assigned g1 = m− 1 and g2 = 0, since different multiplicities
do not matter if the eigenvalue is identical, zero in this case.

Step 7. Options for which only three distinct eigenvalues remain are excluded, i.e. f1 or f2 and
g1 or g2 are zero. A connected simple and k-regular graph with three distinct eigenvalues is
a strongly regular graph, never a divisible design graph.

The procedure above results in the options for v ≤ 15 in Table 5.1. In this table the options with
λ1 = k − 1 are also mentioned separately because they can be classified on their own, see section
5.2.

v Total number of options Options with λ1 = k − 1
4 0 0
6 1 1
8 3 1
9 0 0
10 1 1
12 11 5
14 2 1
15 3 0

Table 5.1: Options v ≤ 15

The figures in Table 5.1 include the options with the same parameters, but only the multiplicities
vary.

5.1.1 Checking for n ≤ 10

As one can imagine, the number of options that might describe a divisible design graph grows
rapidly if v grows. For small v we can check quite easily whether a certain parameter set corre-
sponds to a k-regular graph, because these graphs are known and their adjacency matrices can be
used to check the options. In this section the remaining options will be checked for v = 6, 8, 10,
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then n becomes too large and we will have to use other methods. v = 4, 9 do not get any more at-
tention, since it has already been tested that there do not exist non-trivial divisible design graphs
on 4 or 9 vertices.
In this section we will also look at divisible design graphs with λ1 = k− 1, which are classified on
their own in section 5.2.
In the following sections all k-regular graphs have been reported by Meringer (2004).

Divisible design graphs for v = 6

The one remaining parameter set for a divisible design graph on 6 vertices is summarized in Table
5.2.

v k λ1 λ2 m n αf11 αf22 αg13 αg24 DDG?
6 3 2 1 3 2 - −13

√
3
1 −

√
3
1

No

Table 5.2: Option for a GDD when v = 6

If there exists a divisible design graph on 6 vertices it must be on of the two graphs in Figure 5.1.
Because those are the only two 3-regular graphs on 6 vertices.

Figure 5.1: All 3-regular graphs on 6 vertices

The adjacency matrix of the left graph in Figure 5.1 has eigenvalues and multiplicities (−22, 02, 11, 31),
the eigenvalues and multiplicities do not correspond, hence the left graph is no divisible design
graph. The right graph has eigenvalues and multiplicities (−3, 04, 3). The right graph is also not
a divisible design graph.
This leads to the conclusion that there is no non-trivial divisible design graph on 6 vertices.

Divisible design graphs for v = 8

When we want to find a non-trivial divisible design graph with 8 vertices there are only 3 possi-
bilities to check, see Table 5.3, only one of these has non-integer eigenvalues (1).

Index v k λ1 λ2 m n αf11 αf22 αg13 αg24 DDG?
1 8 3 0 1 4 2

√
3
2 −

√
3
2

- −13 No
2 8 4 0 2 4 2 21 −23 03 - Yes
3 8 5 4 2 2 4 12 −14 - −31 Yes

Table 5.3: Possible parameter sets of a DDG on 8 vertices
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In Figure 5.2 all possible 3-regular graphs can be found. If option 1 in Table 5.3 corresponds to a
divisible design graph, it must correspond to one of those graphs. Comparing the eigenvalues and
multiplicities in Table 5.3 with those in Figure 5.2 tells us that parameter set 1 in Table 5.3 does
not correspond to a divisible design graph.

1:(−
√

5
1
,−14, 1,

√
5, 3) 2:# eigenvalues larger than 5

3:(−2.5616,−1.61802, 0, 0.61802, 1.5616, 3) 4:(−31,−13, 13, 3)

5:(−1−
√

2
2
,−1,−1 +

√
2
2
, 12, 3)

Figure 5.2: All possible 3-regular graphs on 8 vertices with corresponding eigenvalues

Since there does not exist a (non-trivial) 3-regular divisible design graph, we will go on to the
check whether there are 4-regular graphs. Option 2 in Table 5.3 with k = 4 has k2 − λ2v = 0
and therefore precisely 4 eigenvalues. There exist 6 different 4-regular graphs, in Figure 5.3 all
4-regular graphs are given with their eigenvalues.
The parameter set has 4 distinct eigenvalues, therefore only the graph in the upper right corner of
Figure 5.3 might be a divisible design graph. The eigenvalues and multiplicities also correspond
exactly with those in Table 5.3 and index 2, therefore it might be a (4,2,4,0,2)-graph.

When checking all possibilities we have never been certain that the parameters indeed correspond
to a divisible design graph, so before we can say this is a divisible design graph, the graph must
form a divisible design. This can be checked by taking the adjacency matrix1 of the graph to

1The adjacency matrix is changed such that the rows and columns of the same groups are put next to each other.
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1:# eigenvalues larger than 5 2:(−23, 03, 2, 4)

3:(−22,−
√

2
2
, 0,
√

2
2
, 4) 4:# eigenvalues larger than 5

5:(−3.2361,−2, 04, 1.2361, 4) 6:(−4, 06, 4)

Figure 5.3: All possible 4-regular graphs on 8 vertices with corresponding eigenvalues



CHAPTER 5. NON-TRIVIAL DIVISIBLE DESIGN GRAPHS 21

the power 2, if this corresponds to equation (3.4) then the adjacency matrix of the graph also
corresponds to a divisible design graph.
And indeed option 2 corresponds to a divisible design graph that looks like graph 2 in Figure 5.3.
The points that are in the same group are the points that are connected with a strict vertical or
horizontal line in the picture. The graph is the complement of the cube graph.
The last option on 8 vertices is for k = 5 and might correspond to a 5-regular graph. In Figure
5.4 the possible graphs are drawn and the last parameter set is option 3 in Table 5.3.

(−31,−14, 12, 5) (−2.41422,−12, 0.41422, 1, 5)

(−31,−1.61802, 02, 0.61802, 5)

Figure 5.4: All possible 5-regular graphs on 8 vertices with corresponding eigenvalues

Just by looking at the eigenvalues in Figure 5.4 we already know that graph 2 and 3 will never
correspond to option 3 in Table 5.3, because the eigenvalues of these graph in the Figure are not all
integers, whereas option 3 has integer eigenvalues. Comparing the multiplicities and eigenvalues
results in the possibility that graph 1 in Figure 5.4 corresponds to option 3. The last check whether
this is really a divisible design graph is positive and therefore we have found the second and last
divisible design graph on 8 vertices. The points are alternating in group 1 or 2. This graph is
called a circulant graph on 8 vertices: C8(1, 3, 4).

Divisible design graphs for v = 10

v k λ1 λ2 m n αf11 αf22 αg13 αg24 DDG?
10 5 4 2 5 2 - −15

√
5
2 −

√
5
2

Yes

Table 5.4: Possible parameter set for a DDG on 10 vertices

In Table 5.4 we see that there is only one possible parameter set left with k = 5. There are 60
5-regular graphs on 10 vertices. We will check whether one of the 60 5-regular graphs corresponds

If this is not possible without sacrificing symmetry or a zero trace, the matrix cannot correspond to a divisible
design graph
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Figure 5.5: A DDG on 10 vertices with k = 5

to the parameters in Table 5.4 and indeed there turns out to be a divisible design graph. The
graph is drawn in Figure 5.5, where two opposite vertices are in the same group. This specific
graph is called a circulant graph on 10 vertices: C10(1, 4, 5).

5.2 Divisible designs with λ1 = k − 1

In the previous section we saw some non-trivial designs for small v. It is however not possible to
check the possibilities for large v in the same way. A number of options have λ1 = k− 1, in Table
5.1 it can be seen the fraction is substantial. In Haemers (1991) these kind of divisible designs are
classified and it is proven how the incidence matrix should look.

Theorem 5.2.1 (Haemers, 1991) An incidence structure D is a divisible design with r−λ1 = 1
if and only if D or the complement of D has an incidence matrix (A ⊗ J) + I, where one of the
following holds:

(i) J − 2A is the core of a skew-symmetric Hadamard matrix.

(ii) J has size (2× 2) and A is the adjacency matrix of a strongly regular graph with µ− λ = 1.

(iii) A = 0 or A = J − I.

This means that any divisible designs with λ1 = k−1 falls in one of the classes above. Class (i) does
not have a symmetric incidence matrix, therefore will never correspond to a DDG. Furthermore
we can conclude from this that a DDG on an odd number of points cannot occur.

Theorem 5.2.2 A divisible design graph with λ1 = k − 1 has an even number of points v.

Proof. A divisible design graph cannot fall in class (i), therefore it must be in class (ii) or (iii). It
is straightforward that it can only fall in class (ii) if the number of points is even. The complement
of class (ii) cases is a situation where λ1 = k.
In class (iii), there are two types A = 0 and A = J − I. If A = 0 the incidence matrix is I or its
complement J − I which are both no strict divisible design and do not correspond to a divisible
design graph. This leaves A = J−I, in this case the incidence matrix has blocks J off the diagonal
and blocks I on the diagonal. If you interchange row 1 and 2, 3 and 4 and so on. There will arise a
zero diagonal and the matrix is still symmetric and corresponds to a divisible design and therefore
also a divisible design graph. This interchanging of the rows is only possible when v is even, if it
is odd, the group size n is also odd and there will be no possibility to interchange the last row of
every group such that there is a zero diagonal and the matrix remains symmetric.
The only case left to describe the complement of (A⊗J) + I when A = J − I. If this is true, then
λ2 = 0, which has already been described as a trivial case, see Theorem 4.2.1, but also λ1 = k−2�

Corollary 5.2.1 A divisible design graph with λ1 = k − 1 has an even group size n.
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Proof. This follows with the same argument as in Theorem 5.2.2. The divisible designs in class
(ii) always have an even group size. If the group size in class (iii) is odd, the incidence matrix
cannot be kept symmetric and with a zero diagonal. �

This last corollary is already implemented in the search procedure in 5.1.
All options of class (iii) that correspond with a divisible design graph are summarized in the
following Theorem.

Theorem 5.2.3 If v ≡ 0 mod a, a ∈ {4, 6, 8, . . . } and v 6= a. Then there exists a divisible
design graph with parameters (a2 ,

2v
a , v −

2v
a + 1, v − 2v

a , v − 2 2v
a + 2).

Proof. We will show that if v is as such it is a divisible design of class (iii) and corresponds to
a graph because it is symmetric with a non zero diagonal. Take the number of groups equal to
m = a

2 which is possible because a is even. Then n = 2v
a . The divisible design graph is in class

(iii) not because A = 0, but because A = J − I. Take A = Jm− Im. (A⊗Jn) + Iv is now equal to
a matrix with ones, except for the blocks on the diagonal those are identities. Interchanging row 1
and 2, 3 and 4 and so on results in the desired graph, where k is equal to (m− 1)n+ 1 = v−n+ 1
because there are in every row m− 1 blocks with 1’s and a one extra. Within a group it is clear
that λ1 = k − 1 because the rows are identical except for the ’extra’ one. The inproduct of two
rows of different groups is equal to λ2 = (m − 2)n + 2 = v − 2n + 2. Which proofs the existence
of such a divisible design graph, since the incidence matrix is still symmetric and with a zero
diagonal. �

One of the divisible design graphs defined by Theorem 5.2.3 is for example the graph on 8 vertices
with index 3 in Table 5.3. It is not possible to have divisible design graphs defined by the theorem
where a = 2, because in that case we will end up with the identity matrix or a complete graph
(complement of A⊗ J) + I), not a divisible design graph. This is also the reason why other even
numbers like 10, 14 for example , cannot be a divisible design graph of this type, because they
are divisible by 2 and some odd number, both of which cannot be equal to n, n = 2 results in
an complete graph and odd n is not possible, see also Theorem 5.2.1. For v ≤ 50 there are 38
divisible design graphs2 defined by Theorem 5.2.3.
The eigenvalues and multiplicities can be determined just as in Chapter 3. For divisible design
graphs, defined by Theorem 5.2.3, it holds that the adjacency matrix A equals:

A = Jv −Kmn +B, where B = I 1
2 v
⊗ (J2 − I2) (5.1)

In section 3.2 Jv,Kmn, 0 1
2 v

are defined, the eigenvalues of them are also explained there. The
eigenvalues of B are −1 with multiplicity 1

2v and 1 also with multiplicity 1
2v. The eigenvalues of

divisible designs defined by Theorem 5.2.3 are in Table 5.5.

Eigenvector Eigenvalues of A (5.2.3) Multiplicity
1v v − n+ 1 = k 1
an eigenvector of Kmn corresponding to n (not 1v) −n+ 1 m− 1
an eigenvector of B, not of Kmn corresponding to 1 1 1

2v −m
an eigenvector of B, corresponding to −1 −1 1

2v

Table 5.5: Eigenvalues of the divisible design graphs defined by Theorem 5.2.3

Other divisible design graphs with λ1 = k−1 can now only be divisible designs of class (ii) defined
by Haemers. So for such a divisible design graph to exist there must exist a strongly regular graph
with specific parameters.

Theorem 5.2.4 If a strongly regular graph on v vertices and valency k with µ − λ = 1 exists,
there exists an (v, 2, 2k + 1, 2k, 2λ+ 2)-graph.

2These are not reported in Table B.1
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Proof. It follows directly from Theorem 5.2.1 that there exists a divisible design made with the
strongly regular graph. The number of groups is v because every 1 in the adjacency matrix of the
SRG is replaced by a (2 × 2) matrix of 1’s and n is 2. the degree of the divisible design is equal
to 2k+ 1. The inproduct within a row is exactly 2k, only the ’extra’ ones dot not correspond. λ2

is equal to 2µ = 2λ+ 2.
Furthermore this construction from a SRG corresponds to a DDG, because it is symmetric, since
the SRG is symmetric and the zero diagonal can be found by interchanging row 1 and 2, 3 and 4
and so on. �

To find all divisible design graphs defined by Theorem 5.2.4 on 50 vertices or less, we need to
find all strongly regular graphs on 25 vertices or less, that have µ− λ = 1. There exist 7 of such
strongly regular graphs on 25 vertices or less, see Table 5.6. The parameters are reported by
Brouwer (n.d.). When a parameter set corresponds to more than one strongly regular graph, they
all correspond to different divisible design graphs.

v k λ µ # SRG’s
5 2 0 1 1
9 4 1 2 1
10 3 0 1 1
10 6 3 4 1
13 6 2 3 1
17 8 3 4 1
25 12 5 6 15

Table 5.6: Strongly Regular Graphs with µ− λ = 1 and v ≤ 25.

From Table 5.6 we can conclude that there can only exist divisible design graphs on 10, 18, 20,
26, 34, 50 vertices with λ1 = k − 1 and a divisible design of class (ii). In Table A.1 all divisible
design graphs that are formed from the graphs of Table 5.6 are reported including eigenvalues and
multiplicities. Because some parameter sets of the strongly regular graphs correspond to multiple
graphs not all divisible design graphs (and strongly regular graphs) are uniquely determined by
their spectrum.
The eigenvalues of the divisible design graphs in class (ii) can be found by summing the eigenvalues
of the kronecker product (A⊗J2) and B, as defined in (5.1). The eigenvalues of the product A⊗J2

are all possible multiplications of the eigenvalues of A and J2 and the eigenvalues of B are known.
This results in the eigenvalues in Table 5.7, where k, is the valency of the strongly regular graph,
v the number of vertices of the strongly regular graph and r(> 0) and g(< 0) are its eigenvalues
with corresponding multiplicities mr and mg.

Eigenvalues of A⊗ J +B Multiplicity
2k + 1 = kDDG 1

−1 = α2 v
2r + 1 = α3 mr

2g + 1 = α4 mg

Table 5.7: Eigenvalues of A⊗ J + I

The first eigenvalue is simply the degree of the divisible design graph. Furthermore we see that
the eigenvalue -1 has multiplicity v which is exactly equal to m(n− 1), since n = 2.
The first new DDG from class (iii) we can find on 18 vertices, the search procedure of 5.1 resulted
in 9 options with λ1 = k − 1. Since there is only 1 strongly regular graph on 9 vertices and the
divisible design cannot be in class (iii), this can be reduced to only 4 options with the correct
m,n, k, λ1, λ2 and only multiplicities need to be checked with those of the strongly regular graph.
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Note that the three options that do not correspond to a divisible design graph, are not in Table
B.1.
The graphs defined by Theorem 5.2.3 and 5.2.4 are the only possible divisible design graphs with
λ1 = k − 1. Because class (iii) of Haemers (1991) is defined by the first theorem and class (ii) by
the second. Note that the complement of the strongly regular graph construction correspond to
the situation that λ1 = k.

5.3 Four eigenvalues

In van Dam & Spence (1998) almost all possible graphs with four eigenvalues are reported on 30
vertices or less. Although certainly not all divisible design graphs have four eigenvalues, it is a
substantial part of the results after the procedure in section 5.1. Note that all trivial divisible
design graphs and those with λ1 = k − 1 have four eigenvalues. From this point on we will not
pay any attention to divisible design graphs with λ1 = k− 1, because these are already classified.

5.3.1 Walkregularity

Graphs with four eigenvalues are always walk-regular (van Dam, 1995), therefore we can impose
a new restriction on the remaining possibilities with only four eigenvalues.

θr =
1
v

(kr + f1α
r
1 + f2α

r
2 + g1α

r
3 + g2α

r
4) ≥ 0 and θr ∈ N ∀r and θr ≡ 0 mod 2 if r odd (5.2)

This equation is a generalization of the fact that in a walk-regular graph the number of closed
walks of length r is constant for all vertices and of course must be integer larger or equal to zero.
Using this extra condition for r = 3 and r = 4 (it already holds for r = 2), results in excluding 6
options out of the 36 left with four eigenvalues v ≤ 30. These 36 options include the two options
on 8 vertices, we already investigated. Note that options for which k2 − λ2v = 0 always have 4
eigenvalues.
Options with four eigenvalues that do not satisfy 5.2 are not in Table B.1.

5.3.2 Non-existing spectra

The list with 30 options can be checked with the spectra reported in van Dam & Spence (1998).
In Table 5.8 all the options that do not occur in van Dam & Spence are reported, since the spectra
of these sets do not exist, the parameter sets do not correspond to divisible design graphs.

Index v k λ1 λ2 m n αf11 αf22 αg13 αg24
1 8 3 0 1 4 2 1.7322 −1.7322 - −13

2 12 7 3 4 4 3 23 −25 - −13

3 16 4 0 1 4 4 25 −27 03 -
4 16 7 0 3 8 2 2.6464 −2.6464 - −17

5 16 12 8 9 4 4 23 −29 03 -
6 20 13 9 8 4 5 27 −29 - −33

7 24 5 0 1 6 4 2.2369 −2.2369 - −15

8 24 11 0 5 12 2 3.3176 −3.3176 - −111

9 24 15 10 9 6 4 2.2369 −2.2369 - −35

10 24 16 12 10 4 6 23 −217 43 -
11 28 19 15 12 4 7 211 −213 - −53

Table 5.8: Parameter sets with non-existing spectra
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5.3.3 Uncertain existence & Distance-regularity

There are now 19 options left on 30 vertices or less with four eigenvalues that may correspond to
divisible design graphs. Out of these 19 options there are 4 spectra for which the classification is
not yet finished, see Table 5.9.

Index v k λ1 λ2 m n αf11 αf22 αg13 αg24 Lower bound
1 28 13 0 6 14 2 3.6067 −3.6067 - −113 515
2 28 10 6 3 7 4 214 −27 - −46 2
3 28 15 6 8 7 4 37 −314 16 - 8472
4 30 16 12 8 10 3 215 −25 - −49 82

Table 5.9: Parameter sets with four eigenvalues that are not completely classified

The parameter sets can correspond to divisible design graphs, but since not all graph with these
spectra are determined we cannot tell how many divisible design graphs have these parameters. On
the web page of Spence (n.d.) the hexadecimal representations of the graphs with four eigenvalues
can be found. Since option 2 in Table 5.9 has a lower boundary of 2, it was little effort, to check for
these two graphs whether they are divisible design graphs. It turns out that these two graphs are
no divisible design graphs. For option 1, 3 and 4 the graphs that are known, are not yet checked.
We can however exclude option 2 and 4 completely. The trace of the matrix R belonging to the
divisible design graph of option 2 should be equal to 10− 4 · 6 = −14, clearly it is not possible to
have a negative diagonal sum of R. For option 4 holds the same, the trace of R should equal -20,
that is also not possible, see Corollary 4.1.2.

Conjecture 5.3.1 If a divisible design graph is cospectral with a distance regular graph, it is a
distance-regular.

This conjecture has its origin in the fact that out of the options on four eigenvalues 6 of these
also correspond to one of the distance-regular graphs in Haemers & Spence (1995). For option
18 in Haemers & Spence (13 in Table 5.10) it is remarkable that it has exactly 2 distance-regular
graphs, whereas there are 13 graphs with that spectrum (van Dam & Spence, 1998) and we have
also found exactly 2 divisible design graphs with this spectrum with the files of Spence. Though we
have not checked that the two divisible design graphs we have found are indeed GQ(2, 4)\spread,
i.e. minus 2 different spreads, but we are sure there are 2.
If this conjecture is correct option 1 in Table 5.9 corresponds to exactly 1 divisible design graph,
the Taylor graph. In Haemers & Spence (1995) it is shown that there is only one graph with that
spectrum that is distance-regular and therefore it may be the only divisible design graph.
If Conjecture 5.3.1 is true, we also know that parameter set 7 in Table 5.10 corresponds to only one
divisible design graph, that is J(6,3), because it is the only distance-regular graph. The Johnson
graph (6,3) can shown to be a divisible design graph, the other 8 graphs with the spectrum are
reported in Haemers & Spence (1995), but not checked.
The final example with this conjecture is the Klein graph, the spectrum of the Klein graph admits
10 non-isomorphic graphs, only one of these is a divisible design graph, and we can show that that
is the Klein graph (Option 8 in Table 5.10).

5.3.4 Constructions of graphs

The spectrum of option 9 in Table 5.10 exists, but does not correspond to a divisible design graph.
There exist 5 graphs with this spectrum (van Dam & Spence, 1998) all of these cannot be arranged
in groups such that λ1 and λ2 are the correct constants.
The spectra of option 7, 8, 12, 13 all allow for more than one graph, but there exist 1, 1, 4 and
2 divisible design graphs with these spectra. (Option 7 needs to be checked or conjecture proven,
13 only to be sure of the name of the graph).
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Index v k λ1 λ2 m n αf11 αf22 αg13 αg24 # graphs Notes
1 8 4 0 2 4 2 21 −23 03 - 1 Cube
2 12 5 0 2 6 2 2.2363 −2.2363 - −15 1 Icosahedron
3 12 5 1 2 4 3 22 −26 13 - 1 L(K(3,4))
4 12 6 2 3 3 4 23 −26 02 - 1 L(CP(3))
5 15 4 0 1 5 3 25 −25 - −14 1 L(Petersen)
6 20 7 3 2 4 5 24 −212 33 - 1 L(K(4,5))
7 20 9 0 4 10 2 35 −35 - −19 ≥ 1 J(6,3)
8 24 7 0 2 8 3 2.6468 −2.6468 - −17 1 Klein graph
9 24 8 4 2 4 6 211 −29 - −43 0 -
10 24 8 4 2 4 6 25 −215 43 - 1 L(K(4,6))
11 24 14 7 8 8 3 2.6468 −2.6468 - −27 1 Klein1,3

12 24 16 12 10 4 6 29 −211 - −43 4 -
13 27 18 9 12 9 3 36 −312 08 - 2 GQ(2, 4)\spread?
14 28 9 5 2 4 7 26 −218 53 - 1 L(K(4,7))
15 30 23 19 16 2 15 210 −218 - −71 1 G=2GQ(2,2)

Table 5.10: Parameter sets with spectra that exist

Of course it is interesting to know whether graphs exist on 30 vertices, but if some of the graphs
exhibit a structure that holds when v grows, we know much more. It is clear that option 3, 6,
10 and 14 have a common form. They are all line graphs of complete bipartite graphs, with one
group of 4 and one unequal to 4.

Theorem 5.3.1 A L(K(4, n)) graph is also a (4, n, n + 2, n − 2, 2) divisible design graph, n 6=
4, n > 2.

Proof. A line graph can directly found by CCT −2I, where C is the matrix representing all edges,
therefore C is of size (4n× (4 + n)). This matrix looks like:

C =

�
A1 In
A2 In
A3 In
A4 In

�
Where Ai is a (n×4) matrix with ones in column i and 0 anywhere else. CCT is of size (4n×4n).
Then we get the line graph:

L =

�
Jn − In In In In
In Jn − In In In
In In Jn − In In
In In In Jn − In

�
It can be clearly seen that the matrix L above corresponds to a divisible design graph with the
desired parameters. n cannot be equal to 4, because then λ1 = λ2. If n = 2, then λ2 = 0, which
is a trivial case. �

Note that all graphs defined by Theorem 5.3.1 are circulant. The matrix can also be written as
J4⊗In+K−2In, which can be used to find the multiplicities f1, f2, g1, which are n−1, 3(n−1), 3
and g2 is always zero. Since these graphs have eigenvalue -2, there cannot be other graphs with
the spectrum of L(K(4, n)).

Option 12 in Table 5.10 is found by computer search only , done by Van Dam & Spence (1998),
and therefore does not yield any new construction methods.
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Option 15 is the only option that has an eigenvalue k − v and therefore the complement of the
graph is disconnected and the disjoint union of strongly regular graphs, in case of divisible design
graphs this disjoint union consists of strongly regular graphs with a complement that has λ = µ.
In the list for v ≤ 30 with four eigenvalues option 15 is the only one with an eigenvalue k− v, this
construction method may be used for larger v.

Theorem 5.3.2 If A is the adjacency matrix of a (v, k, λ)-graph and k 6= v − 1, then Im ⊗ A +
Jmv −Kmv is the adjacency matrix of a divisible design graph.

Proof. We have B = Im ⊗ A + Jmv − Kmv. The number of groups is m and the group size is
v. The valency is k + v(m − 1). The inproduct within a group is equal to λ and v times m − 1.
The inproduct between two points outside is obviously equal to 2λ+ v(m− 2). So it is a divisible
design and is symmetric and has a zero diagonal, therefore it is a divisible design graph. �

The eigenvalues are k+mv− v = k+ v(m− 1) with multiplicity 1 and is the degree of the DDG.
The other eigenvalues are ±

√
k − λ and this is equal to the eigenvalues of the (v, k, λ)-graph, the

multiplicities also correspond. α3 does not exist and α4 is equal to k + v(m − 1) − vm = k − v.
All eigenvalues are expressed in the parameters of the (vk, kλ)-graph.
Since there are only 3 (v, k, λ)-graphs smaller than 25 (Brouwer n.d.), there are only 6 divisible
design graphs of this type on 50 vertices or less. These are the ones with index 100, 115, 122, 284,
385, 398 in Table B.1. Since graphs with eigenvalue k − v are always such that the complement
is a disjoint union of strongly regular graphs, these are the only possibilities the spectrum of the
divisible design graphs admits.

Option 4 and 5 (and the ones defined by Theorem 5.3.1) are graphs with least eigenvalue -2.
Which means the graph G can only be (van Dam & Spence (1998):

i. C7

ii. The line graph of a strongly regular graph

iii. The line graph of the incidence graph of a square? design

iv. The line graph of a complete bipartite graph

v. One of BCS9, BCS70, BCS153−BCS160, BCS179, BCS183 found by Bussemaker, Cvetković
and Seidel (1978).

It is clear that option 4 and 5 are both line graphs of strongly regular graphs, since both the
Petersen and the cocktail party graph are strongly regular. The options defined by Theorem 5.3.1
are line graphs of complete bipartite graphs (iv). Note that all graphs in (v) never correspond
to divisible design graphs. It is not true that the line graph of every strongly regular graph is
a divisible design graph, take for example the strongly regular graph on 9 vertices, the Paley(9)
graph.
The other options (1,2,7,8,11,13) are all constructed with association schemes, see van Dam &
Spence (1998).
Van Dam (1995) shows that a graph with four eigenvalues and two of these eigenvalues (k and µ)
are simple, i.e. with multiplicity one, can be partitioned into two parts of equal size, such that
every vertex has 1

2 (k + µ) neighbors in its own part and 1
2 (k − µ) in the other part. Although on

30 vertices or less this result does not exclude possibilities, it might be useful for larger v.

A final not so obvious construction we have already seen with the line graph of the Petersen graph.
It can also be written as: L(Petersen)=J15 − K53 − A, where A is the adjacency matrix of the
triangular graph T(6). Of course this is not true for every A.
It must be true that (J −K − A)2 equals (3.4). We can easily see that if A is a k-regular graph,
with a partition into classes of size n, then JA = AJ = kJ , JK = KJ = nJ , J2 = vJ . The
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partition of A must have zero blocks on the diagonal to avoid negative entries, therefore it has a
Hoffman coloring.
If the row sum per block of A is constant AK = KA = Q⊗ Jn, and Q is the matrix with the row
sums. In order to satisfy (3.4) A can only correspond to a (v, k, λ)-graph and the row sums of the
off-diagonal blocks of A must be a constant, γ, thus AK = KA = γ(J − γ)K. Therefore:

(J −A−K)2 = (v − 2k − 2n+ λ+ 2γ)Jv + (k − λ)Iv + (n+−2γ)K (5.3)

So we can express the paramaters of the divisible design in the parameters of the (v, k, λ)-graph:

λ2 = v − 2k − 2n+ λ+ 2γ (5.4)
λ1 = v − 2k − n+ λ (5.5)

kDDG = v − k − n (5.6)

This leads to the following theorem:

Theorem 5.3.3 If there exists a (v, k, λ)-graph with an equitable partition with zero diagonal
blocks (n × n) such that the row sums γ of the off-diagonal blocks are equal (n 6= 2γ) and with a
Hoffman coloring, then Jv −A−K is a divisible design graph.

In case of the line graph of the Petersen graph, we already saw that A =T(6).
There is also a (v, k, λ)-graph on 16 vertices, but it does not appear in Table B.1. So it does not
have the desired equitable partition. The next (v, k, λ)-graph is (35,18,9), this graph has a Hoffman
coloring. This would correspond to a (7, 5, 12, 3, 4) divisible design graph, in Table B.1 there are
two options (130, 131) with these parameters, so we need to check which of the multiplicities is
correct.
We need the eigenvalues of J − A − K, these eigenvalues are in Table 5.11 expressed in the
parameters of the (v, k, λ)-graph. The first eigenvalue α0 can be found by summing all eigenvalues
corresponding to 1v.
Since we know that J − A − K has a Hoffman coloring and a constant row sum in the off-
diagonal blocks, it has R = (n − γ)(Jm − Im). Therefore R has the eigenvalue (n − γ)(m −
1) with multiplicity 1 and −(n − γ) with multiplicity m − 1. We know that this last value is
either α3 or α4, since it is negative it must be α4. The other eigenvalues are ±

√
kDDG − λ1 =

±
È

(v − k − n)− (v − 2k − n+ λ) = ±
√
k − λ. The multiplicities can be computed from the

trace, that must be zero. Since α0 + (m − 1)α4 = 0, the multiplicities of α1 and α2 must be the
same.

Eigenvalues of J −A−K (5.3.3) Multiplicity
α0 = v − k − n 1
α1 =

√
k − λ 1

2 (m(n− 1))
α2 = −

√
k − λ 1

2 (m(n− 1))
α4 = −(n− γ) = −v−k−nm−1 m− 1

Table 5.11: Eigenvalues of J −A−K expressed in parameters of(v, k, λ)-graph A

The first divisible design graph that is defined by Theorem 5.3.3 is the one with index 130 in Table
B.1. There might also be such a divisible design graphs on 36, 40 and 45 vertices, we have not yet
checked.

5.4 Five eigenvalues

After the search procedure in section 5.1 65 options with five eigenvalues are left on 30 vertices or
less.
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5.4.1 λ1 = 0

The case that λ2 = 0 has already been thoroughly explained and can be regarded as a trivial design.
The case λ1 = 0 is not trivial, but has characteristics that makes it worthwhile to investigate all
remaining options with λ1 = 0.
In Bose (1977) it is proven that square divisible designs with λ1 = 0 have an incidence matrix N
that is built of blocks of (n×n) and these blocks have a constant row and column sum. In the case
of λ1 = 0 this sum is 0 or 1. Furthermore he shows that if a square divisible design with λ1 = 0
exists, there also exists an square 2-design D0 with parameters m, k0, λ0, where k0 = m − k and
λ0 = m− 2k + nλ2.

Corollary 5.4.1 A divisible design graph with λ1 = 0 has m ≥ k and m− 2k + nλ2 ≥ 0.

Proof. Suppose m < k. We know from Bose (1977) that if λ1 = 0 the column and row sums of
the blocks are 0 or 1. This means every row has a maximum of m non-zero entries. We assumed
that m < k, which results in a contradiction and therefore m ≥ k.
From Bose we also know that if λ1 = 0 and the divisible design has the dual property, there must
exist a 2-design with λ0 = m − 2k + nλ2. A divisible design graph possesses the dual property,
thus must fulfill this condition, which means λ0 must be greater or equal to 0. �

Although Corollary 5.4.1 does not exclude any of the options in Table 5.12 it might be useful for
larger v or for different search procedures.
In Table 5.12 all parameter sets with λ1 = 0 and five eigenvalues are presented for v ≤ 30.

Index v k λ1 λ2 m n αf11 αf22 αg13 αg24
1 15 4 0 1 5 3 24 −26 12 −12

2 20 9 0 4 10 2 34 −36 13 −16

3 20 9 0 4 10 2 33 −37 16 −13

4 26 9 0 3 13 2 35 −38 1.7326 −1.7326

Table 5.12: Possible parameter sets with λ1 = 0 and v ≤ 30

Apart from m, k0 and λ0 that should form a design, the matrix R from Bose(1977) should in itself
also correspond to a 2-design, with parameters (m, k, nλ2).
This means the matrix R in case of option 1 should be a 2-(5,4,3) design. This design does exist.
For a divisible design graph this matrix R must also be symmetric. The only numbers in this
matrix R are zeros and ones, one zero in every row (and column). If R has a constant diagonal of
zeros or ones, the divisible design graph is walk regular (Theorem 4.1.2) and must satisfy condition
(5.2). Furthermore the diagonal sum must equal k + (g1 − g2)α3 (Corollary 4.1.2) and the row
sum of the matrix must be equal to k. Thus in the case of option 1 there must be 4 ones on the
diagonal. This is not possible because there is no symmetric (3 × 3) matrix with row sum 1 and
a zero diagonal: option 1 does not correspond to a divisible design graph.
Option 3 is also no divisible design graph, the row sum of R should be equal to 12 (Corollary
4.1.2), which is impossible, because the sum of any block is equal to 0 or 1.
The diagonal sum of R is equal to 6 for option 2 and the row sum to 9. For option 4 both sums
must be equal to 9.

5.4.2 Bose

Bose’s result (1977) in the previous paragraph is actually a generalization of another theorem.
Which states that if there exists a t ∈ R, t 6= 1 that satisfies:

2k = mt+
(n− 1)λ1

t− 1
(5.7)
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then the matrix R has only values t or t− 1 and there exists a 2-(m, k0, λ0) design, where:

k0 = k − (n− 1)λ1

t− 1
, λ0 = nλ2 −

t(n− 1)λ1

t− 1
(5.8)

Out of the 65 options with five eigenvalues, there are 9 parameter sets that admit a t, see Table
5.13.

Index v k λ1 λ2 m n αf11 αf22 αg13 αg24 t
1 12 5 1 2 4 3 23 −25 11 −12 2
2 12 7 3 4 4 3 22 −26 12 −11 2
3 14 10 6 7 7 2 21 −26 1.4143 −1.4143 2
4 20 11 2 6 10 2 34 −36 12 −17 2
5 20 11 2 6 10 2 33 −37 15 −14 2
6 20 11 2 6 10 2 32 −38 18 −11 2
7 28 13 4 6 7 4 39 −312 11 −15 2
8 28 13 4 6 7 4 38 −313 14 −12 2
9 28 15 6 8 7 4 38 −313 13 −13 3

Table 5.13: Possible parameter sets with t satisfying (5.7)

Option 1 and 2 in Table 5.13 have their smallest eigenvalue equal to −2. In the previous section
we stated some conditions for graphs with four eigenvalues and least eigenvalue −2, in general the
following theorem holds.

Theorem 5.4.1 (Cvetković, Rowlinson & Simić, 2004) If G is a regular connected graph
with least eigenvalue -2, then one of the following holds:

i. G is a line graph

ii. G is a cocktail party graph

iii. G is an exceptional graph (with a representation in E8).

Option 1 and 2 are no exceptional graphs because of a theorem in Cvetković et al (2004, p. 90).
That theorem states that any exceptional graph should fulfill one of three conditions,, option 1
and 2 fulfill neither.
Therefore option 1 and 2 can only be line graphs of some sort. From Cvetković et al. (2004, p.
5) we know that for a connected regular line graph L(H) it must hold that H is regular or H is
semi-bipartite. Thus in our case H there are 5 possibilities for H:

a. 2-regular on 12 vertices, cycle graph

b. 3-regular on 8 vertices

c. 4-regular on 6 vertices, cocktail party graph

d. complete bipartite graph K(3,4)

e. complete bipartite graph K(2,6)

We can already exclude option d. as a possibility for H, this is indeed a divisible design graph, and
already classified in Theorem 5.3.1, option 3. Obviously option a. is also not one of the desired
divisible design graphs. The 3-regular graphs on 8 vertices all result in 4-regular line graphs and
we need a 5 or 7 regular graph. The cocktail party graph on 6 vertices, has a 6-regular line graph
and also does not correspond to option 1 or 2 in Table 5.13. The complete bipartite K(2, 6) also
has a 6-regular line graph and therefore we can conclude that option 1 and 2 cannot exist.

Option 3,5,6 from Table 5.13 can be excluded because of Corollary 4.1.2. Option 4 can be excluded
because the diagonal sum D of R is D < (t− 1)m and option 8 because D > mt.
Option 7 and 9 in Table 5.13 might still be possible.
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5.4.3 Constructions of graphs

There are now 56 options left, of which 5 are on v ≤ 20 including option 2 in Table 5.12, reprinted
as option 4 in Table 5.14. We will try to reconstruct these 5 graphs or show they cannot exist.

Index v k λ1 λ2 m n αf11 αf22 αg13 αg24
1 18 9 6 4 6 3 1.7326 −1.7326 31 −34

2 18 10 6 5 3 6 25 −210 3.1621 −3.1621

3 20 7 3 2 4 5 27 −29 31 −32

4 20 9 0 4 10 2 34 −36 13 −16

5 20 13 9 8 4 5 24 −212 32 −31

Table 5.14: Remaining parameter sets for v ≤ 20

We will start with examining option 1 in Table 5.14 more closely. The diagonal of the matrix R
must sum up to zero, since the sums of the blocks are nonnegative, R has a zero diagonal. The
row sum of R must be equal to nine, there are a few combinations that sum up to 9 and have at
least one zero, see Table 5.15.

Index # rij = 0 # rij = 1 # rij = 2 # rij = 3 Inproduct
1 3 0 0 0 9
2 2 1 1 2 7
3 2 0 3 1 6
4 1 3 0 2 6
5 1 2 2 1 5

Table 5.15: Possible entries for R for option 1 (Table 5.14)

The inproduct of a block of zeros is obviously zero. The inproduct of a matrix with row and
column sum equal to one is also zero. The inproduct of Jn is n, in this case 3 and because we
have (3×3) matrices, the inproduct with row sum 2 is 1. Therefore it can easily be seen that only
option 3 and 4 might be entries for R, because the inproduct equals λ1.
Option 3 in Table 5.15 cannot be the way to construct a divisible design graph, because it is not
possible the place the blocks such that the inproduct outside the groups is equal to λ2, 4. This
can be easily seen, when you try any arbitrary combination of the first row of R. If the second
zero block (the first is on the diagonal) is in column i then it is not possible to place the three
blocks with sum two and the one with three, such that λ2 = 4.
Option 4 however can correspond to a divisible design graph with the desired parameters. One
possibility for an adjacency matrix is:

A =

0BBBBBB@
03 I3 I3 I3 J3 J3

I3 03 J3 J3 I3 I3
I3 J3 03 J3 b3 a3

I3 J3 J3 03 a3 b3
J3 I3 a3 b3 03 J3

J3 I3 b3 a3 J3 03

1CCCCCCA , where a3 =

�
0 1 0
0 0 1
1 0 0

�
and b3 =

�
0 0 1
1 0 0
0 1 0

�
Therefore we know that there exists at least one divisible design graph with the parameters of
option 1 in Table 5.14.
For option 2 in Table 5.14 we can try to construct a matrix R with row sum equal to 10, diagonal
sum equal to 10 (sum of eigenvalues) and entries from zero to 6. There are only few such possi-
bilities (7) for three digits to sum up to 10, some of these will not correspond to the desired R,
because λ1 will not be equal to 6. The eigenvalues of the remaining (3× 3) matrices however do
not correspond to 10,

√
10 and −

√
10. Option 2 is no divisible design graph.
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Option 3 must have an R with diagonal sum of 4 and a row sum of 7. Since all blocks are of size
(5× 5), there cannot be a diagonal block with sum 1, because there is no symmetric matrix with
row sum 1 and zeros on the diagonal. Therefore the diagonal of R is (4,0,0,0) or (2,2,0,0) both
in all possible orders. If the diagonal is (4,0,0,0), R can be one of the following matrices (rows
maybe interchanged if the corresponding columns are also interchanged):

R1 =

�
4 3 0 0
3 0 2 2
0 2 0 5
0 2 5 0

�
, R2 =

�
4 2 1 0
2 0 2 3
1 2 0 4
0 3 4 0

�
, R3 =

�
4 1 1 1
1 0 3 3
1 3 0 3
1 3 3 0

�
Computing the eigenvalues of R1, R2, R3 shows that R3 has the desired eigenvalues 7,3,-3,-3. If
the diagonal is (2,2,0,0) there cannot be found a matrix R that has the correct eigenvalues.
If R3 is indeed an R that corresponds with a divisible design graph, the blocks on the diagonal are
J5 − I5 and zero blocks, on the first row and column there are furthermore identity matrices (any
other permutation matrix is also fine). For the other rows of blocks to have an inproduct λ2 = 2
with the first block row, the following must hold:

A =

�
J5 − I5 I I I
I 05 B C
I BT 05 CT

I CT BT 05

�
whereB+C = J5 +I5 anddiag(B) = diag(C) = (1, 1, 1, 1, 1)

Know look at the inproduct of block row 2 and 3. For the sixth row of A to have an inproduct
of λ2 = 2 with the rows of the third block row (row 11 to 15 of A), we need to have again
C + CT = J + I. This implies that B = CT , thus we have:

A =

�
J5 − I5 I I I
I 05 B BT

I BT 05 B
I B BT 05

�
This matrix B cannot be symmetric because then the inproduct within a group, λ1 = 3, is not
correct. It would imply that within the block all rows have an inproduct of 1.5. We need to try
to construct a matrix B such that B +BT = J + I such that every row of the matrix [B BT ] has
3 ones in common with any other row. Let’s start the matrix B with an arbitrary row (1,1,1,0,0),
then we know the following:

B =

�
1 1 1 0 0
0 1 a b c
1 ∗ 1 ∗ ∗
1 ∗ ∗ 1 ∗
1 ∗ ∗ ∗ 1

�
BT =

�
1 0 0 1 1
1 1 d e f
1 ∗ 1 ∗ ∗
0 ∗ ∗ 1 ∗
0 ∗ ∗ ∗ 1

�
Row 1 and 2 of the matrix [BBT ] now have 2 ones in common, we need only a one more. Suppose
a = 1 and b or c is zero, then either e or f is one and then there are too much ones in common.
If a = 0 then b = c = 1 and e = f = 0 and we have too little ones in common.
Whatever row you start with, when constructing B, this problem always arises, therefore option
3 in Table 5.14 does not exist.
Option 4 in Table 5.14 can only have a matrix R that is as follows:
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R =

0BBBBBBBBBBBBBB@

1 0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 0

1CCCCCCCCCCCCCCA
The block size is in this case only two, therefore we have three matrices that can be used to build
the divisible design graph:

I =
�

1 0
0 1

�
, J − I =

�
0 1
1 0

�
, 0 =

�
0 0
0 0

�
We can now represent the adjacency matrix A with another (10×10) matrix, X where 0 represents
02, 1 represents the matrix I2 and -1 represents J2−I2. Obviously there are 10 zeros in this matrix
and the matrix is symmetric. The inproduct outside the groups must equal 4, every row contains
exactly one zero, therefore precisely four entries are identical and in the same position as in any
other row. For example row 1 of X is (1,0,1,1,1,1,-1,-1,-1,-1), then a correct row 2 would be
(0,1,1,1,-1,-1,-1,-1,1,1) of course this must also hold for row 3 to 10 and between any other pair of
rows. the inproduct of two different rows is 0 now, thus:

XX = 9I andXX−1 = I −→ X−1 =
1
9
X (5.9)

This means the matrix X corresponding to R, is almost an orthogonal matrix. The matrix X
looks as follows3:

X =

0BBBBBBBBBBBBBB@

−1 0 1 1 1 1 1 −1 −1 1
0 −1 1 1 1 1 −1 1 1 −1
1 1 −1 0 1 1 −1 1 −1 1
1 1 0 −1 1 1 1 −1 1 −1
1 1 1 1 −1 0 −1 −1 1 1
1 1 1 1 0 −1 1 1 −1 −1
1 −1 −1 1 −1 1 0 −1 −1 −1
−1 1 1 −1 −1 1 −1 0 −1 −1
−1 1 −1 1 1 −1 −1 −1 0 −1

1 −1 1 −1 1 −1 −1 −1 −1 0

1CCCCCCCCCCCCCCA
The adjacency matrix is the found by substituting for I2, J2 − I2 and 02. Note that this graph is
the first divisible design graph that is not walk-regular.
The only possibility for option 5 in Table 5.14 for the diagonal of R is (4,4,4,4), since it must sum
up to 16. To get a row sum of 13 we need to check some possibilities of (4 × 4) matrices, if the
row sum of R must be 13, the only R that gives the correct eigenvalues, is the one where the row
is built off (4,4,4,1). It can be easily seen that the matrix below indeed corresponds to a divisible
design graph with the parameters of option 5 in Table 5.14.

A =

�
J5 − I5 J5 − I5 J5 − I5 I5
J5 − I5 J5 − I5 I5 J5 − I5
J5 − I5 I5 J5 − I5 J5 − I5
I5 J5 − I5 J5 − I5 J5 − I5

�
3With help from Willem Haemers who put the 1’s and −1’s at the right positions
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This adjacency matrix A exhibits a clear pattern:

A = (Jm −Xm)⊗ (Jn − In) +Xn ⊗ In where Xm =

�
0 0 0 1
0 0 1 0
... . ..

...
1 0 0 0

�
∈ Rm×m (5.10)

If this construction exists the matrix R is defined as:

R = (n− 1)Jm + (2− n)Xm (5.11)

The eigenvalues are k = mn −m − n + 2 and ±(2 − n). We know from Corollary 4.1.3 that the
eigenvalues and multiplicities of A are partly equal to those of R, thus (n − 2) =

√
k2 − λ2mn.

Since we can express k in terms of m,n, we can rewrite λ2 = mn−2m−n+ 6 + m−4
n . This results

in a necessary condition.

Corollary 5.4.2 If A = (Jm −Xm)⊗ (Jn − In) +Xn ⊗ In is the adjacency matrix of a divisible
design graph, we have m− 4 ≡ 0 mod n.

Proof. If m− 4 6≡ 0 mod n then λ2 is not an integer. �

We now know k, λ2,m, n, therefore with (3.6) we could express λ1 in m,n and possibly find some
new divisibility conditions.



Chapter 6

Concluding remarks

At this moment all spectra of divisible design graphs on 20 vertices or less are known. For just
four instances it is uncertain how many (non-isomorphic) divisible design graphs correspond to a
certain spectrum. Although not all of the graphs are reported in this thesis, they can all be found
with the theorems, since for small v all combinatorial objects needed are known.
On 50 vertices and less we have found 35 parameter sets for which existence is confirmed and there
are 241 left for which existence is unclear.
At the end of this thesis a critical comment might be that the trivial cases of Chapter 4 are not
at all trivial. The existence of 2-designs or (v, k, λ)-graphs is not trivial at all. They are only
trivial in the sense that we know how to construct these cases, although we do not (yet) have the
building material. The class of graphs defined by Theorem 5.2.3 is much more trivial.

An obvious open end in this thesis is quite obviously the proof or counterexample for Conjecture
5.3.1, proof would exclude some uncertainties in Table B.1.
The computer search used in this thesis is obviously not efficient. It includes spectra that van
Dam & Spence were able to exclude earlier. Furthermore the search procedure described in 5.1
does not include all knowledge and therefore is not as efficient as it could have been. For v ≤ 50 it
takes only a few seconds to find possible parameter sets, for large v the procedure needs updating.
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Appendix A

DDG’s with λ1 = k − 1

In Section 5.2 all possible DDG’s for λ1 = k − 1 have been defined. Haemers (1991) classified all
GDD with λ1 = k − 1 and with this in mind Theorem 5.2.3 summarizes all possible DDG’s of
class (iii).
Theorem 5.2.4 summarizes all DDG’s of class (ii). Because the existence of strongly regular graphs
is not in all cases evident or trivial, these DDG’s are present in a separate table.

Index v k λ1 λ2 m n αf11 α‘2f2 αg13 αg24 # graphs
1 10 5 4 2 5 2 - −15

√
5
2 −

√
5
2

1
2 18 9 8 4 9 2 - −19 34 −34 1
3 20 7 6 2 10 2 - −110 35 −34 1
4 20 13 12 8 10 2 - −110 34 −35 1
5 26 13 12 6 13 2 - −113

√
13

6 −
√

13
6

1
6 34 17 16 8 17 2 - −117

√
17

8 −
√

17
8

1
7 50 25 24 12 25 2 - −125 512 −512 15

Table A.1: DDG’s with λ1 = k − 1 and in class (ii)

Note that for example option 4 is built from the complement of the strongly regular graph used
for opti0n 3.
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Appendix B

List of possible parameter sets

In Table B.1 all possible parameter sets are reported on 50 vertices or less. The parameters are
found by the search procedure of section 5.1. This means this table excludes the cases λ1 = k and
λ2 = 0. Furthermore the divisible design graphs defined by Theorem 5.2.3 are not included in the
list.

Since it is known that graphs with four eigenvalues are walk-regular, all possibilities with four
eigenvalues are checked whether they satisfy the condition for walk-regularity, (5.2) for r = 3 and
r = 4. Parameter sets that did not satisfy (5.2) are excluded from the table.
In Table B.1 all parameters are given, together with the eigenvalues αi and multiplicities fi and
gi. If there exists a t such that (5.7) is satisfied, this or these t’s are reported.
The number of graphs, denoted by # has a zero if the parameter set does not correspond with a
divisible design graph, if it is blank existence is not yet know, otherwise it gives the number of
(non-isomorphic) graphs or the lower boundary on the number of graphs.
The column ’Notes’ gives the name of the graph, if it has one, or the reason why it does not exist
if this can be easily stated. The short hand vD&S refers to the publication of van Dam & Spence
(1998). Sometimes a (not necessarily unique) matrix is given to construct a divisible design graph
with.
Non existence can often be shown with the diagonal sum, D, of the matrix R, which cannot
be smaller than 0 or larger than m(n − 1) = Dmax. The reference column shows where more
information can be found, a section in the thesis or a theorem.
The table increases with v, then k and then λ1.
There are 241 open cases on v ≤ 50 and 35 for which existence is confirmed, which leaves 133
parameter sets that do not correspond with a divisible design graph.

Table B.1: (Possible) Divisible Design Graphs

Index v k , λ1 , λ2 , m , n α
f1
1

α
f2
2

α
g1
3

α
g2
4

t # Notes Ref.

1 8 3 , 0 , 1 , 4 , 2 1.7322 −1.7322 - −13 1 0 vD&S 5.3.2
2 8 4 , 0 , 2 , 4 , 2 21 −23 03 - 1,2 1 Cube 5.3.4
3 10 5 , 4 , 2 , 5 , 2 - −15 2.2362 −2.2362 1 C10(1,4,5) Thm. 5.2.4
4 12 5 , 0 , 2 , 6 , 2 2.2363 −2.2363 - −15 1 1 Icosahedron 5.3.4
5 12 5 , 1 , 2 , 4 , 3 22 −26 13 - 2 1 L(K(3,4)) 5.3.4
6 12 5 , 1 , 2 , 4 , 3 23 −25 11 −12 2 0 αmin = −2 5.4.2
7 12 6 , 2 , 3 , 3 , 4 23 −26 02 - 2,3 1 L(CP(3)) 5.3.4
8 12 7 , 3 , 4 , 4 , 3 23 −25 - −13 2 0 vD&S 5.3.2
9 12 7 , 3 , 4 , 4 , 3 22 −26 12 −11 2 0 αmin = −2 5.4.2
10 14 10 , 6 , 7 , 7 , 2 21 −26 1.4143 −1.4143 2 0 D > Dmax Cor. 4.1.2
11 15 4 , 0 , 1 , 5 , 3 25 −25 - −14 1 1 L(Petersen) Thm. 5.3.3
12 15 4 , 0 , 1 , 5 , 3 24 −26 12 −12 1 0 5.4.1
13 16 4 , 0 , 1 , 4 , 4 25 −27 03 - 1,2 0 vD&S 5.3.2
14 16 7 , 0 , 3 , 8 , 2 2.6464 −2.6464 - −17 1 0 vD&S 5.3.2
15 16 12 , 8 , 9 , 4 , 4 23 −29 03 - 3,4 0 vD&S 5.3.2
16 18 9 , 6 , 4 , 6 , 3 1.7326 −1.7326 31 −34 ≥ 1 5.4.3
17 18 9 , 8 , 4 , 9 , 2 - −19 34 −34 1 Thm. 5.2.4
18 18 10 , 6 , 5 , 3 , 6 25 −210 3.1621 −3.1621 0 5.4.3
19 20 7 , 3 , 2 , 4 , 5 24 −212 33 - 1 L(K(4,5)) 5.3.4
20 20 7 , 3 , 2 , 4 , 5 27 −29 31 −32 0 5.4.3
21 20 7 , 6 , 2 , 10 , 2 - −110 35 −34 1 Thm. 5.2.4
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Table B.1: continued

Index v k , λ1 , λ2 , m , n α
f1
1

α
f2
2

α
g1
3

α
g2
4

t # Notes Ref.

22 20 9 , 0 , 4 , 10 , 2 35 −35 - −19 1 ≥ 1 J(6,3) 5.3.4
23 20 9 , 0 , 4 , 10 , 2 34 −36 13 −16 1 ≥ 1 5.4.3
24 20 9 , 0 , 4 , 10 , 2 33 −37 16 −13 1 0 D > Dmax Cor. 4.1.2
25 20 11 , 2 , 6 , 10 , 2 34 −36 12 −17 2 0 D < (t − 1)m 5.4.2
26 20 11 , 2 , 6 , 10 , 2 33 −37 15 −14 2 0 D > Dmax Cor. 4.1.2
27 20 11 , 2 , 6 , 10 , 2 32 −38 18 −11 2 0 D > Dmax Cor. 4.1.2
28 20 13 , 9 , 8 , 4 , 5 27 −29 - −33 0 vD&S 5.3.2
29 20 13 , 9 , 8 , 4 , 5 24 −212 32 −31 ≥ 1 5.4.3
30 20 13 , 12 , 8 , 10 , 2 - −110 34 −35 1 Thm. 5.2.4
31 21 12 , 8 , 6 , 3 , 7 26 −212 4.2431 −4.2431

32 24 5 , 0 , 1 , 6 , 4 2.2369 −2.2369 - −15 1 0 vD&S 5.3.2
33 24 6 , 2 , 1 , 3 , 8 29 −212 3.4641 −3.4641

34 24 7 , 0 , 2 , 8 , 3 2.6468 −2.6468 - −17 1 1 Klein graph 5.3.4
35 24 8 , 4 , 2 , 4 , 6 211 −29 - −43 0 D < 0 Cor. 4.1.2
36 24 8 , 4 , 2 , 4 , 6 25 −215 43 - 1 L(K(4,6)) 5.3.4
37 24 8 , 4 , 2 , 4 , 6 29 −211 41 −42

38 24 8 , 4 , 2 , 4 , 6 27 −213 42 −41

39 24 9 , 4 , 3 , 6 , 4 2.2369 −2.2369 31 −34

40 24 9 , 6 , 3 , 12 , 2 1.7326 −1.7326 34 −37

41 24 10 , 2 , 4 , 12 , 2 2.8286 −2.8286 23 −28

42 24 10 , 3 , 4 , 8 , 3 2.6468 −2.6468 21 −26

43 24 10 , 6 , 3 , 3 , 8 28 −213 5.2921 −5.2921

44 24 11 , 0 , 5 , 12 , 2 3.3176 −3.3176 - −111 1 0 vD&S 5.3.2
45 24 14 , 6 , 8 , 12 , 2 2.8286 −2.8286 22 −29

46 24 14 , 7 , 8 , 8 , 3 2.6468 −2.6468 - −27 1 Klein1,3 5.3.4

47 24 14 , 10 , 7 , 3 , 8 27 −214 5.2921 −5.2921

48 24 15 , 10 , 9 , 6 , 4 2.2369 −2.2369 - −35 0 vD&S 5.3.2
49 24 15 , 12 , 9 , 12 , 2 1.7326 −1.7326 33 −38

50 24 16 , 12 , 10 , 4 , 6 29 −211 - −43 4 5.3.4
51 24 16 , 12 , 10 , 4 , 6 23 −217 43 - 0 vD&S 5.3.2
52 24 16 , 12 , 10 , 4 , 6 27 −213 41 −42

53 24 16 , 12 , 10 , 4 , 6 25 −215 42 −41

54 24 18 , 14 , 13 , 3 , 8 26 −215 3.4641 −3.4641

55 25 8 , 4 , 2 , 5 , 5 28 −212 3.7422 −3.7422

56 25 12 , 8 , 5 , 5 , 5 27 −213 4.3592 −4.3592

57 26 9 , 0 , 3 , 13 , 2 35 −38 1.7326 −1.7326 1 5.4.1
58 26 13 , 12 , 6 , 13 , 2 - −113 3.6066 −3.6066 1 Thm. 5.2.4
59 27 6 , 3 , 1 , 9 , 3 1.7329 −1.7329 33 −35

60 27 8 , 4 , 2 , 9 , 3 27 −211 3.1624 −3.1624

61 27 12 , 6 , 5 , 9 , 3 2.4499 −2.4499 32 −36

62 27 16 , 12 , 8 , 3 , 9 28 −216 6.3251 −6.3251

63 27 16 , 12 , 9 , 9 , 3 25 −213 3.6064 −3.6064

64 27 18 , 9 , 12 , 9 , 3 36 −312 08 - 2,3 2 GQ(2, 4)\spread ? 5.3.4
65 27 20 , 16 , 14 , 3 , 9 27 −217 4.691 −4.691

66 28 6 , 2 , 1 , 7 , 4 29 −212 2.8283 −2.8283

67 28 9 , 5 , 2 , 4 , 7 26 −218 53 - 1 L(K(4,7)) 5.3.4
68 28 9 , 5 , 2 , 4 , 7 211 −213 51 −52

69 28 10 , 6 , 3 , 7 , 4 214 −27 - −46 0 D < 0 Cor. 4.1.2
70 28 10 , 6 , 3 , 7 , 4 212 −29 41 −45 0 D < 0 Cor. 4.1.2
71 28 10 , 6 , 3 , 7 , 4 210 −211 42 −44

72 28 10 , 6 , 3 , 7 , 4 28 −213 43 −43

73 28 10 , 6 , 3 , 7 , 4 26 −215 44 −42

74 28 10 , 6 , 3 , 7 , 4 24 −217 45 −41 0 D > Dmax Cor. 4.1.2
75 28 13 , 0 , 6 , 14 , 2 3.6067 −3.6067 - −113 1 Taylor graph? 5.3.3
76 28 13 , 4 , 6 , 7 , 4 39 −312 11 −15 2
77 28 13 , 4 , 6 , 7 , 4 38 −313 14 −12 2 0 D > mt 5.4.2
78 28 15 , 6 , 8 , 7 , 4 37 −314 16 - 3 5.3.3
79 28 15 , 6 , 8 , 7 , 4 38 −313 13 −13 3
80 28 18 , 14 , 11 , 7 , 4 210 −211 41 −45

81 28 18 , 14 , 11 , 7 , 4 28 −213 42 −44

82 28 18 , 14 , 11 , 7 , 4 26 −215 43 −43

83 28 18 , 14 , 11 , 7 , 4 24 −217 44 −42 0 D > Dmax Cor. 4.1.2
84 28 18 , 14 , 11 , 7 , 4 22 −219 45 −41 0 D > Dmax Cor. 4.1.2
85 28 19 , 15 , 12 , 4 , 7 211 −213 - −53 0 vD&S 5.3.2
86 28 19 , 15 , 12 , 4 , 7 26 −218 52 −51

87 28 22 , 18 , 17 , 7 , 4 25 −216 2.8283 −2.8283 0 D > Dmax Cor. 4.1.2
88 30 6 , 2 , 1 , 15 , 2 26 −29 2.4497 −2.4497

89 30 10 , 6 , 3 , 15 , 2 25 −210 3.1627 −3.1627

90 30 16 , 12 , 8 , 10 , 3 215 −25 - −49 0 D < 0 Cor. 4.1.2
91 30 16 , 12 , 8 , 10 , 3 213 −27 41 −48 0 D < 0 Cor. 4.1.2
92 30 16 , 12 , 8 , 10 , 3 211 −29 42 −47 0 D < 0 Cor. 4.1.2
93 30 16 , 12 , 8 , 10 , 3 29 −211 43 −46

94 30 16 , 12 , 8 , 10 , 3 27 −213 44 −45

95 30 16 , 12 , 8 , 10 , 3 25 −215 45 −44

96 30 16 , 12 , 8 , 10 , 3 23 −217 46 −43 0 D > Dmax Cor. 4.1.2
97 30 16 , 12 , 8 , 10 , 3 21 −219 47 −42 0 D > Dmax Cor. 4.1.2
98 30 18 , 14 , 9 , 3 , 10 29 −218 7.3481 −7.3481

99 30 22 , 18 , 15 , 3 , 10 28 −219 5.8311 −5.8311

100 30 23 , 19 , 16 , 2 , 15 210 −218 - −71 1 A=T(6) Thm. 5.3.2
101 32 6 , 0 , 1 , 16 , 2 2.4498 −2.4498 26 −29 1
102 32 10 , 0 , 3 , 16 , 2 3.1628 −3.1628 25 −210 1
103 32 10 , 2 , 3 , 8 , 4 2.82812 −2.82812 21 −26

104 32 10 , 6 , 2 , 4 , 8 216 −212 - −63 0 D < 0 Cor. 4.1.2
105 32 10 , 6 , 2 , 4 , 8 27 −221 63 - 1 L(K(4,8)) Thm. 5.3.1
106 32 10 , 6 , 2 , 4 , 8 213 −215 61 −62

107 32 10 , 6 , 2 , 4 , 8 210 −218 62 −61

108 32 14 , 2 , 6 , 16 , 2 3.4648 −3.4648 24 −211

109 32 15 , 0 , 7 , 16 , 2 3.8738 −3.8738 - −115 1
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Index v k , λ1 , λ2 , m , n α
f1
1

α
f2
2

α
g1
3

α
g2
4
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110 32 15 , 6 , 7 , 4 , 8 312 −316 - −13 4
111 32 16 , 0 , 8 , 16 , 2 46 −410 015 - 1,2
112 32 17 , 8 , 9 , 4 , 8 311 −317 12 −11 5
113 32 18 , 6 , 10 , 16 , 2 3.4648 −3.4648 23 −212

114 32 22 , 12 , 15 , 16 , 2 3.1628 −3.1628 22 −213 2
115 32 22 , 18 , 12 , 2 , 16 212 −218 - −101 2 A=Shrikhande Thm. 5.3.2
116 32 22 , 18 , 12 , 2 , 16 27 −223 101 - 0 D > Dmax Cor. 4.1.2
117 32 22 , 18 , 14 , 4 , 8 213 −215 - −63

118 32 22 , 18 , 14 , 4 , 8 24 −224 63 - 0 D > Dmax Cor. 4.1.2
119 32 22 , 18 , 14 , 4 , 8 210 −218 61 −62

120 32 22 , 18 , 14 , 4 , 8 27 −221 62 −61

121 32 26 , 20 , 21 , 16 , 2 2.4498 −2.4498 21 −214 2
122 32 26 , 22 , 20 , 2 , 16 210 −220 - −61 1 A=Clebsch Thm. 5.3.2
123 32 26 , 22 , 20 , 2 , 16 27 −223 61 - 0 D > Dmax
124 33 10 , 0 , 3 , 11 , 3 3.16211 −3.16211 - −110 1
125 33 20 , 10 , 12 , 11 , 3 3.16211 −3.16211 - −210

126 33 20 , 16 , 10 , 3 , 11 210 −220 8.3671 −8.3671

127 33 24 , 20 , 16 , 3 , 11 29 −221 6.9281 −6.9281

128 34 17 , 16 , 8 , 17 , 2 - −117 4.1238 −4.1238 1 Thm. 5.2.4
129 35 6 , 0 , 1 , 7 , 5 2.44914 −2.44914 - −16 1
130 35 12 , 3 , 4 , 7 , 5 314 −314 - −26 3854 A=(35,18,9) Thm. 5.3.3
131 35 12 , 3 , 4 , 7 , 5 312 −316 23 −23

132 35 12 , 8 , 3 , 5 , 7 212 −218 6.2452 −6.2452

133 35 16 , 12 , 6 , 5 , 7 211 −219 6.7822 −6.7822

134 35 24 , 18 , 16 , 7 , 5 2.44914 −2.44914 - −46

135 35 28 , 24 , 22 , 7 , 5 27 −221 3.7423 −3.7423

136 36 9 , 3 , 2 , 12 , 3 2.44912 −2.44912 34 −37

137 36 9 , 4 , 2 , 18 , 2 2.2369 −2.2369 37 −310

138 36 10 , 6 , 1 , 3 , 12 218 −215 - −82 0 D < 0 Cor. 4.1.2
139 36 10 , 6 , 1 , 3 , 12 214 −219 81 −81

140 36 11 , 7 , 2 , 4 , 9 28 −224 73 - 1 L(K(4,9)) Thm. 5.3.1
141 36 11 , 7 , 2 , 4 , 9 215 −217 71 −72

142 36 12 , 3 , 4 , 4 , 9 314 −318 03 - 3,4
143 36 14 , 10 , 3 , 3 , 12 213 −220 9.3811 −9.3811

144 36 17 , 0 , 8 , 18 , 2 4.1239 −4.1239 - −117 1
145 36 22 , 18 , 11 , 3 , 12 211 −222 9.3811 −9.3811

146 36 24 , 15 , 16 , 4 , 9 312 −320 03 - 6,7
147 36 25 , 21 , 16 , 4 , 9 215 −217 - −73

148 36 25 , 21 , 16 , 4 , 9 28 −224 72 −71

149 36 26 , 22 , 17 , 3 , 12 26 −227 82 - 0 D > Dmax Cor. 4.1.2
150 36 26 , 22 , 17 , 3 , 12 210 −223 81 −81

151 36 27 , 21 , 20 , 12 , 3 2.44912 −2.44912 31 −310

152 36 27 , 22 , 20 , 18 , 2 2.2369 −2.2369 34 −313

153 38 9 , 0 , 2 , 19 , 2 38 −311 2.2369 −2.2369 1
154 38 27 , 18 , 19 , 19 , 2 35 −314 2.6469 −2.6469 0 D > Dmax Cor. 4.1.2
155 39 16 , 12 , 6 , 13 , 3 29 −217 4.696 −4.696

156 39 18 , 9 , 8 , 13 , 3 310 −316 3.4646 −3.4646

157 39 24 , 20 , 12 , 3 , 13 212 −224 10.3921 −10.3921

158 39 28 , 24 , 18 , 3 , 13 211 −225 9.0551 −9.0551

159 39 30 , 21 , 23 , 13 , 3 38 −318 1.7326 −1.7326 3 0 D > Dmax Cor. 4.1.2
160 39 32 , 28 , 26 , 13 , 3 25 −221 3.1626 −3.1626 0 D > Dmax Cor. 4.1.2
161 40 9 , 0 , 2 , 10 , 4 315 −315 - −19 1
162 40 9 , 0 , 2 , 10 , 4 314 −316 13 −16 1
163 40 9 , 0 , 2 , 10 , 4 313 −317 16 −13 1
164 40 11 , 2 , 3 , 5 , 8 315 −320 14 - 3
165 40 11 , 2 , 3 , 5 , 8 316 −319 11 −13 3
166 40 12 , 8 , 2 , 4 , 10 221 −215 - −83 0 D < 0 Cor. 4.1.2
167 40 12 , 8 , 2 , 4 , 10 29 −227 83 - 1 L(K(4,10)) Thm. 5.3.1
168 40 12 , 8 , 2 , 4 , 10 217 −219 81 −82

169 40 12 , 8 , 2 , 4 , 10 213 −223 82 −81

170 40 15 , 10 , 5 , 10 , 4 2.23615 −2.23615 53 −56

171 40 16 , 12 , 6 , 20 , 2 219 −21 43 −416 0 D < 0 Cor. 4.1.2
172 40 16 , 12 , 6 , 20 , 2 217 −23 44 −415 0 D < 0 Cor. 4.1.2
173 40 16 , 12 , 6 , 20 , 2 215 −25 45 −414 0 D < 0 Cor. 4.1.2
174 40 16 , 12 , 6 , 20 , 2 213 −27 46 −413 0 D < 0 Cor. 4.1.2
175 40 16 , 12 , 6 , 20 , 2 211 −29 47 −412 0 D < 0 Cor. 4.1.2
176 40 16 , 12 , 6 , 20 , 2 29 −211 48 −411

177 40 16 , 12 , 6 , 20 , 2 27 −213 49 −410

178 40 16 , 12 , 6 , 20 , 2 25 −215 410 −49

179 40 16 , 12 , 6 , 20 , 2 23 −217 411 −48 0 D > Dmax Cor. 4.1.2
180 40 16 , 12 , 6 , 20 , 2 21 −219 412 −47 0 D > Dmax Cor. 4.1.2
181 40 17 , 8 , 6 , 2 , 20 315 −323 71 -
182 40 18 , 2 , 8 , 20 , 2 412 −48 21 −218 0 D < 0 Cor. 4.1.2
183 40 18 , 2 , 8 , 20 , 2 411 −49 23 −216 0 D < 0 Cor. 4.1.2
184 40 18 , 2 , 8 , 20 , 2 410 −410 25 −214

185 40 18 , 2 , 8 , 20 , 2 49 −411 27 −212

186 40 18 , 2 , 8 , 20 , 2 48 −412 29 −210

187 40 18 , 2 , 8 , 20 , 2 47 −413 211 −28 0 D > Dmax Cor. 4.1.2
188 40 18 , 2 , 8 , 20 , 2 46 −414 213 −26 0 D > Dmax Cor. 4.1.2
189 40 18 , 2 , 8 , 20 , 2 45 −415 215 −24 0 D > Dmax Cor. 4.1.2
190 40 18 , 2 , 8 , 20 , 2 44 −416 217 −22 0 D > Dmax Cor. 4.1.2
191 40 18 , 6 , 8 , 10 , 4 3.46415 −3.46415 - −29

192 40 19 , 0 , 9 , 20 , 2 4.35910 −4.35910 - −119 1
193 40 22 , 6 , 12 , 20 , 2 411 −49 22 −217 0 D < 0 Cor. 4.1.2
194 40 22 , 6 , 12 , 20 , 2 410 −410 24 −215

195 40 22 , 6 , 12 , 20 , 2 49 −411 26 −213

196 40 22 , 6 , 12 , 20 , 2 48 −412 28 −211

197 40 22 , 6 , 12 , 20 , 2 47 −413 210 −29 0 D > Dmax Cor. 4.1.2
198 40 22 , 6 , 12 , 20 , 2 46 −414 212 −27 0 D > Dmax Cor. 4.1.2
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199 40 22 , 6 , 12 , 20 , 2 45 −415 214 −25 0 D > Dmax Cor. 4.1.2
200 40 22 , 6 , 12 , 20 , 2 44 −416 216 −23 0 D > Dmax Cor. 4.1.2
201 40 22 , 6 , 12 , 20 , 2 43 −417 218 −21 0 D > Dmax Cor. 4.1.2
202 40 23 , 14 , 12 , 2 , 20 314 −324 71 -
203 40 24 , 20 , 14 , 20 , 2 219 −21 42 −417 0 D < 0 Cor. 4.1.2
204 40 24 , 20 , 14 , 20 , 2 217 −23 43 −416 0 D < 0 Cor. 4.1.2
205 40 24 , 20 , 14 , 20 , 2 215 −25 44 −415 0 D < 0 Cor. 4.1.2
206 40 24 , 20 , 14 , 20 , 2 213 −27 45 −414 0 D < 0 Cor. 4.1.2
207 40 24 , 20 , 14 , 20 , 2 211 −29 46 −413 0 D < 0 Cor. 4.1.2
208 40 24 , 20 , 14 , 20 , 2 29 −211 47 −412

209 40 24 , 20 , 14 , 20 , 2 27 −213 48 −411

210 40 24 , 20 , 14 , 20 , 2 25 −215 49 −410

211 40 24 , 20 , 14 , 20 , 2 23 −217 410 −49 0 D > Dmax Cor. 4.1.2
212 40 24 , 20 , 14 , 20 , 2 21 −219 411 −48 0 D > Dmax Cor. 4.1.2
213 40 25 , 20 , 15 , 10 , 4 2.23615 −2.23615 52 −57

214 40 28 , 24 , 18 , 4 , 10 217 −219 - −83

215 40 28 , 24 , 18 , 4 , 10 25 −231 83 - 0 D > Dmax Cor. 4.1.2
216 40 28 , 24 , 18 , 4 , 10 213 −223 81 −82

217 40 28 , 24 , 18 , 4 , 10 29 −227 82 −81

218 40 29 , 20 , 21 , 5 , 8 313 −322 11 −13 6
219 40 31 , 22 , 24 , 10 , 4 311 −319 11 −18 4
220 40 31 , 22 , 24 , 10 , 4 310 −320 14 −15 4
221 40 31 , 22 , 24 , 10 , 4 39 −321 17 −12 4 0 D > Dmax Cor. 4.1.2
222 40 33 , 30 , 27 , 20 , 2 1.73210 −1.73210 34 −315

223 42 13 , 0 , 4 , 14 , 3 3.60614 −3.60614 - −113 1
224 42 15 , 6 , 5 , 7 , 6 315 −320 3.8733 −3.8733

225 42 16 , 0 , 6 , 21 , 2 413 −48 21 −219 1 0 D < 0 Cor. 4.1.2
226 42 16 , 0 , 6 , 21 , 2 412 −49 23 −217 1 0 D < 0 Cor. 4.1.2
227 42 16 , 0 , 6 , 21 , 2 411 −410 25 −215 1 0 D < 0 Cor. 4.1.2
228 42 16 , 0 , 6 , 21 , 2 410 −411 27 −213 1
229 42 16 , 0 , 6 , 21 , 2 49 −412 29 −211 1
230 42 16 , 0 , 6 , 21 , 2 48 −413 211 −29 1
231 42 16 , 0 , 6 , 21 , 2 47 −414 213 −27 1 0 D > Dmax Cor. 4.1.2
232 42 16 , 0 , 6 , 21 , 2 46 −415 215 −25 1 0 D > Dmax Cor. 4.1.2
233 42 16 , 0 , 6 , 21 , 2 45 −416 217 −23 1 0 D > Dmax Cor. 4.1.2
234 42 16 , 0 , 6 , 21 , 2 44 −417 219 −21 1 0 D > Dmax Cor. 4.1.2
235 42 19 , 15 , 8 , 14 , 3 223 −25 51 −512 0 D < 0 Cor. 4.1.2
236 42 19 , 15 , 8 , 14 , 3 218 −210 53 −510 0 D < 0 Cor. 4.1.2
237 42 19 , 15 , 8 , 14 , 3 213 −215 55 −58

238 42 19 , 15 , 8 , 14 , 3 28 −220 57 −56

239 42 19 , 15 , 8 , 14 , 3 23 −225 59 −54 0 D > Dmax Cor. 4.1.2
240 42 21 , 12 , 10 , 7 , 6 314 −321 4.5833 −4.5833

241 42 23 , 19 , 12 , 14 , 3 222 −26 51 −512 0 D < 0 Cor. 4.1.2
242 42 23 , 19 , 12 , 14 , 3 217 −211 53 −510 0 D < 0 Cor. 4.1.2
243 42 23 , 19 , 12 , 14 , 3 212 −216 55 −58

244 42 23 , 19 , 12 , 14 , 3 27 −221 57 −56

245 42 23 , 19 , 12 , 14 , 3 22 −226 59 −54 0 D > Dmax Cor. 4.1.2
246 42 26 , 13 , 16 , 14 , 3 3.60614 −3.60614 - −213

247 42 26 , 22 , 13 , 3 , 14 213 −226 11.4021 −11.4021

248 42 26 , 22 , 15 , 7 , 6 211 −224 6.7823 −6.7823

249 42 27 , 18 , 17 , 7 , 6 313 −322 3.8733 −3.8733

250 42 30 , 26 , 19 , 3 , 14 212 −227 10.11 −10.11

251 42 32 , 28 , 24 , 14 , 3 217 −211 41 −412 0 D < 0 Cor. 4.1.2
252 42 32 , 28 , 24 , 14 , 3 215 −213 42 −411 0 D < 0 Cor. 4.1.2
253 42 32 , 28 , 24 , 14 , 3 213 −215 43 −410

254 42 32 , 28 , 24 , 14 , 3 211 −217 44 −49

255 42 32 , 28 , 24 , 14 , 3 29 −219 45 −48

256 42 32 , 28 , 24 , 14 , 3 27 −221 46 −47

257 42 32 , 28 , 24 , 14 , 3 25 −223 47 −46 0 D > Dmax Cor. 4.1.2
258 42 32 , 28 , 24 , 14 , 3 23 −225 48 −45 0 D > Dmax Cor. 4.1.2
259 42 32 , 28 , 24 , 14 , 3 21 −227 49 −44 0 D > Dmax Cor. 4.1.2
260 42 34 , 30 , 27 , 7 , 6 29 −226 4.693 −4.693

261 42 37 , 33 , 32 , 2 , 21 212 −228 - −51

262 44 13 , 9 , 2 , 4 , 11 210 −230 93 - 1 L(K(4,11)) Thm. 5.3.1
263 44 13 , 9 , 2 , 4 , 11 219 −221 91 −92

264 44 21 , 0 , 10 , 22 , 2 4.58311 −4.58311 - −121 1
265 44 31 , 27 , 20 , 4 , 11 219 −221 - −93

266 44 31 , 27 , 20 , 4 , 11 210 −230 92 −91

267 45 8 , 4 , 1 , 9 , 5 216 −220 4.3594 −4.3594

268 45 16 , 12 , 4 , 5 , 9 216 −224 8.7182 −8.7182

269 45 18 , 6 , 7 , 15 , 3 3.46415 −3.46415 34 −310

270 45 18 , 9 , 6 , 3 , 15 318 −324 7.3481 −7.3481

271 45 20 , 16 , 7 , 5 , 9 215 −225 9.222 −9.222

272 45 22 , 18 , 7 , 3 , 15 29 −233 132 - 0 D > Dmax Cor. 4.1.2
273 45 24 , 15 , 12 , 5 , 9 320 −320 - −64

274 45 24 , 15 , 12 , 5 , 9 318 −322 61 −63

275 45 24 , 15 , 12 , 5 , 9 316 −324 62 −62

276 45 24 , 15 , 12 , 5 , 9 314 −326 63 −61

277 45 24 , 18 , 12 , 9 , 5 2.44918 −2.44918 62 −66

278 45 26 , 10 , 15 , 15 , 3 413 −417 12 −112

279 45 26 , 10 , 15 , 15 , 3 412 −418 16 −18

280 45 26 , 10 , 15 , 15 , 3 411 −419 110 −14 0 D > Dmax Cor. 4.1.2
281 45 28 , 24 , 14 , 3 , 15 214 −228 12.411 −12.411

282 45 32 , 28 , 20 , 3 , 15 213 −229 11.1361 −11.1361

283 45 32 , 28 , 22 , 9 , 5 210 −226 5.8314 −5.8314

284 45 38 , 34 , 31 , 3 , 15 215 −227 - −72 1 A=T(6) Thm. 5.3.2
285 45 38 , 34 , 31 , 3 , 15 28 −234 72 - 0 D > Dmax Cor. 4.1.2
286 48 7 , 0 , 1 , 8 , 6 2.64620 −2.64620 - −17 1
287 48 8 , 4 , 1 , 12 , 4 227 −29 - −411 0 D < 0 Cor. 4.1.2
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288 48 8 , 4 , 1 , 12 , 4 25 −231 411 - 0 D > Dmax Cor. 4.1.2
289 48 8 , 4 , 1 , 12 , 4 225 −211 41 −410 0 D < 0 Cor. 4.1.2
290 48 8 , 4 , 1 , 12 , 4 223 −213 42 −49 0 D < 0 Cor. 4.1.2
291 48 8 , 4 , 1 , 12 , 4 221 −215 43 −48 0 D < 0 Cor. 4.1.2
292 48 8 , 4 , 1 , 12 , 4 219 −217 44 −47 0 D < 0 Cor. 4.1.2
293 48 8 , 4 , 1 , 12 , 4 217 −219 45 −46

294 48 8 , 4 , 1 , 12 , 4 215 −221 46 −45

295 48 8 , 4 , 1 , 12 , 4 213 −223 47 −44

296 48 8 , 4 , 1 , 12 , 4 211 −225 48 −43

297 48 8 , 4 , 1 , 12 , 4 29 −227 49 −42

298 48 8 , 4 , 1 , 12 , 4 27 −229 410 −41 0 D > Dmax Cor. 4.1.2
299 48 10 , 0 , 2 , 16 , 3 3.16216 −3.16216 25 −210 1
300 48 13 , 4 , 3 , 3 , 16 322 −323 - −52

301 48 14 , 1 , 4 , 16 , 3 3.60616 −3.60616 24 −211

302 48 14 , 2 , 4 , 12 , 4 3.46418 −3.46418 22 −29

303 48 14 , 10 , 1 , 3 , 16 219 −226 12.1661 −12.1661

304 48 14 , 10 , 2 , 4 , 12 226 −218 - −103 0 D < 0 Cor. 4.1.2
305 48 14 , 10 , 2 , 4 , 12 211 −233 103 - 1 L(K(4,12)) Thm. 5.3.1
306 48 14 , 10 , 2 , 4 , 12 221 −223 101 −102

307 48 14 , 10 , 2 , 4 , 12 216 −228 102 −101

308 48 15 , 6 , 3 , 2 , 24 322 −324 - −91

309 48 15 , 6 , 3 , 2 , 24 319 −327 91 -
310 48 17 , 1 , 6 , 16 , 3 412 −420 115 - 2
311 48 17 , 1 , 6 , 16 , 3 415 −417 13 −112 2
312 48 17 , 1 , 6 , 16 , 3 414 −418 17 −18 2
313 48 17 , 1 , 6 , 16 , 3 413 −419 111 −14 2
314 48 18 , 14 , 3 , 3 , 16 218 −227 13.4161 −13.4161

315 48 18 , 14 , 6 , 12 , 4 230 −26 - −611 0 D < 0 Cor. 4.1.2
316 48 18 , 14 , 6 , 12 , 4 - −236 610 −61 0 D > Dmax Cor. 4.1.2
317 48 18 , 14 , 6 , 12 , 4 227 −29 61 −610 0 D < 0 Cor. 4.1.2
318 48 18 , 14 , 6 , 12 , 4 224 −212 62 −69 0 D < 0 Cor. 4.1.2
319 48 18 , 14 , 6 , 12 , 4 221 −215 63 −68 0 D < 0 Cor. 4.1.2
320 48 18 , 14 , 6 , 12 , 4 218 −218 64 −67

321 48 18 , 14 , 6 , 12 , 4 215 −221 65 −66

322 48 18 , 14 , 6 , 12 , 4 212 −224 66 −65

323 48 18 , 14 , 6 , 12 , 4 29 −227 67 −64

324 48 18 , 14 , 6 , 12 , 4 26 −230 68 −63 0 D > Dmax Cor. 4.1.2
325 48 18 , 14 , 6 , 12 , 4 23 −233 69 −62 0 D > Dmax Cor. 4.1.2
326 48 20 , 10 , 8 , 16 , 3 3.16216 −3.16216 45 −410

327 48 20 , 12 , 8 , 24 , 2 2.82812 −2.82812 49 −414

328 48 21 , 6 , 9 , 24 , 2 3.87312 −3.87312 38 −315

329 48 21 , 8 , 9 , 12 , 4 3.60618 −3.60618 32 −39

330 48 22 , 2 , 10 , 24 , 2 4.47212 −4.47212 26 −217

331 48 22 , 6 , 10 , 16 , 3 417 −415 - −215 2 0 D < 0 Cor. 4.1.2
332 48 22 , 6 , 10 , 16 , 3 416 −416 22 −213 2
333 48 22 , 6 , 10 , 16 , 3 415 −417 24 −211 2
334 48 22 , 6 , 10 , 16 , 3 414 −418 26 −29 2
335 48 22 , 6 , 10 , 16 , 3 413 −419 28 −27 2
336 48 22 , 6 , 10 , 16 , 3 412 −420 210 −25 2
337 48 22 , 6 , 10 , 16 , 3 411 −421 212 −23 2 0 D > Dmax Cor. 4.1.2
338 48 22 , 6 , 10 , 16 , 3 410 −422 214 −21 2 0 D > Dmax Cor. 4.1.2
339 48 22 , 18 , 6 , 3 , 16 224 −221 - −142 0 D < 0 Cor. 4.1.2
340 48 22 , 18 , 6 , 3 , 16 210 −235 142 - 0 D > Dmax Cor. 4.1.2
341 48 22 , 18 , 6 , 3 , 16 217 −228 141 −141

342 48 23 , 0 , 11 , 24 , 2 4.79612 −4.79612 - −123 1
343 48 24 , 8 , 12 , 12 , 4 415 −421 011 - 2,3
344 48 26 , 6 , 14 , 24 , 2 4.47212 −4.47212 25 −218

345 48 26 , 10 , 14 , 16 , 3 49 −423 215 - 2 0 D > Dmax Cor. 4.1.2
346 48 26 , 10 , 14 , 16 , 3 416 −416 21 −214 2
347 48 26 , 10 , 14 , 16 , 3 415 −417 23 −212 2
348 48 26 , 10 , 14 , 16 , 3 414 −418 25 −210 2
349 48 26 , 10 , 14 , 16 , 3 413 −419 27 −28 2
350 48 26 , 10 , 14 , 16 , 3 412 −420 29 −26 2
351 48 26 , 10 , 14 , 16 , 3 411 −421 211 −24 2 0 D > Dmax Cor. 4.1.2
352 48 26 , 10 , 14 , 16 , 3 410 −422 213 −22 2 0 D > Dmax Cor. 4.1.2
353 48 26 , 22 , 10 , 3 , 16 223 −222 - −142 0 D < 0 Cor. 4.1.2
354 48 26 , 22 , 10 , 3 , 16 29 −236 142 - 0 D > Dmax Cor. 4.1.2
355 48 26 , 22 , 10 , 3 , 16 216 −229 141 −141

356 48 27 , 12 , 15 , 24 , 2 3.87312 −3.87312 37 −316

357 48 27 , 14 , 15 , 12 , 4 3.60618 −3.60618 31 −310

358 48 28 , 18 , 16 , 16 , 3 3.16216 −3.16216 44 −411

359 48 28 , 20 , 16 , 24 , 2 2.82812 −2.82812 48 −415

360 48 30 , 26 , 15 , 3 , 16 215 −230 13.4161 −13.4161

361 48 30 , 26 , 18 , 12 , 4 227 −29 - −611 0 D < 0 Cor. 4.1.2
362 48 30 , 26 , 18 , 12 , 4 - −236 69 −62 0 D > Dmax Cor. 4.1.2
363 48 30 , 26 , 18 , 12 , 4 224 −212 61 −610 0 D < 0 Cor. 4.1.2
364 48 30 , 26 , 18 , 12 , 4 221 −215 62 −69 0 D < 0 Cor. 4.1.2
365 48 30 , 26 , 18 , 12 , 4 218 −218 63 −68

366 48 30 , 26 , 18 , 12 , 4 215 −221 64 −67

367 48 30 , 26 , 18 , 12 , 4 212 −224 65 −66

368 48 30 , 26 , 18 , 12 , 4 29 −227 66 −65

369 48 30 , 26 , 18 , 12 , 4 26 −230 67 −64 0 D > Dmax Cor. 4.1.2
370 48 30 , 26 , 18 , 12 , 4 23 −233 68 −63 0 D > Dmax Cor. 4.1.2
371 48 31 , 15 , 20 , 16 , 3 414 −418 - −115 2
372 48 31 , 15 , 20 , 16 , 3 413 −419 14 −111 2
373 48 31 , 15 , 20 , 16 , 3 412 −420 18 −17 2
374 48 31 , 15 , 20 , 16 , 3 411 −421 112 −13 2 0 D > Dmax Cor. 4.1.2
375 48 33 , 24 , 21 , 2 , 24 319 −327 - −91

376 48 33 , 24 , 21 , 2 , 24 316 −330 91 -
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377 48 34 , 30 , 21 , 3 , 16 214 −231 12.1661 −12.1661

378 48 34 , 30 , 22 , 4 , 12 221 −223 - −103

379 48 34 , 30 , 22 , 4 , 12 26 −238 103 - 0 D > Dmax Cor. 4.1.2
380 48 34 , 30 , 22 , 4 , 12 216 −228 101 −102

381 48 34 , 30 , 22 , 4 , 12 211 −233 102 −101

382 48 35 , 26 , 25 , 3 , 16 315 −330 52 -
383 48 35 , 28 , 25 , 8 , 6 2.64620 −2.64620 - −57

384 48 35 , 30 , 25 , 12 , 4 2.23618 −2.23618 52 −59

385 48 38 , 34 , 28 , 3 , 16 218 −227 - −102 2 A=Shrikhande Thm. 5.3.2
386 48 38 , 34 , 28 , 3 , 16 28 −237 102 - 0 D > Dmax Cor. 4.1.2
387 48 38 , 34 , 28 , 3 , 16 213 −232 101 −101

388 48 40 , 36 , 33 , 12 , 4 219 −217 - −411 0 D < 0 Cor. 4.1.2
389 48 40 , 36 , 33 , 12 , 4 217 −219 41 −410

390 48 40 , 36 , 33 , 12 , 4 215 −221 42 −49

391 48 40 , 36 , 33 , 12 , 4 213 −223 43 −48

392 48 40 , 36 , 33 , 12 , 4 211 −225 44 −47

393 48 40 , 36 , 33 , 12 , 4 29 −227 45 −46

394 48 40 , 36 , 33 , 12 , 4 27 −229 46 −45 0 D > Dmax Cor. 4.1.2
395 48 40 , 36 , 33 , 12 , 4 25 −231 47 −44 0 D > Dmax Cor. 4.1.2
396 48 40 , 36 , 33 , 12 , 4 23 −233 48 −43 0 D > Dmax Cor. 4.1.2
397 48 40 , 36 , 33 , 12 , 4 21 −235 49 −42 0 D > Dmax Cor. 4.1.2
398 48 42 , 38 , 36 , 3 , 16 215 −230 - −62 1 A=Clebsch Thm. 5.3.2
399 48 42 , 38 , 36 , 3 , 16 29 −236 62 - 0 D > Dmax Cor. 4.1.2
400 48 42 , 38 , 36 , 3 , 16 212 −233 61 −61

401 49 12 , 8 , 2 , 7 , 7 218 −224 6.7823 −6.7823

402 49 16 , 12 , 4 , 7 , 7 217 −225 7.7463 −7.7463

403 49 18 , 9 , 6 , 7 , 7 318 −324 5.4773 −5.4773

404 49 24 , 15 , 11 , 7 , 7 317 −325 6.0833 −6.0833

405 49 28 , 21 , 15 , 7 , 7 2.64621 −2.64621 71 −75

406 49 40 , 36 , 32 , 7 , 7 211 −231 5.6573 −5.6573

407 50 25 , 15 , 12 , 10 , 5 3.16220 −3.16220 52 −57

408 50 25 , 24 , 12 , 25 , 2 - −125 512 −512 15 Thm. 5.2.4
409 50 33 , 24 , 21 , 5 , 10 317 −328 6.2452 −6.2452
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